Study of electrical properties and characterization of a metal-polymer conductor based on silver-containing nanowires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of forming a conductive metal-polymer composite based on an array of intersecting silver-containing nanowires has been demonstrated. It has been determined that the electrical and mechanical characteristics of the composites depend both on the deposition time and on the ratio of the anode to cathode areas. The resulting metal-polymer composites had mechanical characteristics exceeding those of polymer track membranes made of polyethylene terephthalate. At the same time, with an increase in the ratio of anode to cathode areas and an increase in deposition time, the samples exhibit a decrease in the values of electrical conductivity (0.0025 Ω-1 – at 100 growth cycles, 0.0033 Ω-1 – at 50 cycles), strength (90 MPa – at 100 cycles, 99 MPa – at 50 cycles) and elastic modulus (4.7 GPa – at 100 cycles, 5.4 GPa – at 50 cycles). The data obtained indicate that conductive silver-containing nanowires can be reinforcing structures for conductive metal-polymer composites with high electrical conductivity values, promising for use in flexible electronics elements.

About the authors

D. V. Panov

NRC “Kurchatov Institute”

Author for correspondence.
Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

I. S. Volchkov

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

N. P. Kovalets

Moscow Pedagogical State University

Email: dggamer@mail.ru
Russian Federation, Moscow

P. L. Podkur

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

I. O. Koshelev

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

V. M. Kanevskiy

NRC “Kurchatov Institute”

Email: dggamer@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

References

  1. Goki E., Fanchini G., Manish C. // Nature Nanotechnol. 2008. V. 3. P. 270. https://doi.org/10.1038/nnano.2008.83
  2. Ye S., Rathmell A.R., Chen Z. et al. // Adv. Mater. 2014. V. 26. P. 6670. https://doi.org/10.1002/adma.201402710
  3. Langley D., Giusti G., Mayousse C. et al. // Nanotechnology. 2013. V. 24. P. 452001. https://doi.org/10.1088/0957-4484/24/45/452001
  4. Hecht D.S., Hu L., Irvin G. // Adv Mater. 2011. V. 23. P. 1482. https://doi.org/10.1002/adma.201003188
  5. McCoul D., Hu W., Gao M. et al. // Adv. Electron. Mater. 2016. V. 2. P. 1500407. https://doi.org/10.1002/aelm.201500407
  6. Kumar A., Zhou P. // ACS Nano. 2010. V. 4. P. 11. https://doi.org/10.1021/nn901903b
  7. Mayousse C., Celle C., Moreau E. et al. // Nanotechnology. 2013. V. 24. P. 215501. https://doi.org/10.1088/0957-4484/24/21/215501
  8. Kwon J., Suh Y.D., Lee J. et al. // J. Mater. Chem. 2018. V. 6. P. 7445. https://doi.org/10.1039/c8tc01024b
  9. Celle C., Mayousse C., Moreau E. et al. // Nano Res. 2012. V. 5. P. 427. https://doi.org/10.1007/s12274-012-0225-2
  10. Jiu J., Suganuma K. // IEEE Trans. Components, Packaging Manufactur. Technol. 2016. V. 6. P. 1733. https://doi.org/10.1109/tcpmV.2016.2581829
  11. Lan W., Chen Y., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 7. P. 6644. https://doi.org/10.1021/acsami.6b16853
  12. Kaikanov M., Amanzhulov B., Demeuova G. et al. // Nanomaterials (Basel). 2020. V. 10. P. 2153. https://doi.org/10.3390/nano10112153
  13. Kim Y.J., Kim G., Kim H.-K. // Metals. 2019. V. 9. P. 1073. https://doi.org/10.3390/met9101073
  14. Seo V.H., Lee S., Min K.H. et al. // Sci. Rep. 2016. V. 6. P. 29464. https://doi.org/10.1038/srep29464
  15. Pham S.H., Ferri A., Da A. et al. // Adv. Mater. Interfaces. 2022. V. 9. P. 2200019. https://doi.org/10.1002/admi.202200019
  16. Xu H., Shang H., Wang C., Du Y. // Adv. Funct. Mater. 2020. V. 30. P. 2000793. https://doi.org/10.1002/adfm.202000793
  17. Maisch P., Tam K., Lucera L. et al. // Org. Electron. 2016. V. 38. P. 139. https://doi.org/10.1016/j.orgel.2016.08.006
  18. Zhang L., Song V., Shi L. et al. // J. Nanostruct. Chem. 2021. V. 11. P. 323. https://doi.org/10.1007/s40097-021-00436-3
  19. Lee J., Lee P., Lee H. et al. // Nanoscale. 2012. V. 4. P. 6408. https://doi.org/10.1039/c2nr31254a
  20. Lee P., Lee J., Lee H. et al. // Adv. Mater. 2012. V. 24. P. 3326. https://doi.org/10.1002/adma.201200359
  21. Mitrofanov A.V., Apel P.Y., Blonskaya I.V. et al. // Tech. Phys. 2006. V. 51. P. 1229. https://doi.org/10.1134/S1063784206090209
  22. Doludenko I.M., Volchkov I.S., Turenko B.A. et al. // Mater. Chem. Phys. 2022. V. 287. P. 126285. https://doi.org/10.1016/j.matchemphys.2022.126285
  23. Буркат Г.К. Электроосаждение драгоценных металлов. СПб.: Политехника, 2009. 21 с.
  24. Natter H., Hempelmann R. // J. Phys. Chem. 1996. V. 100. P. 19525. https://doi.org/10.1021/jp9617837
  25. Глинка Н.Л. Общая химия. М.: Интеграл-пресс, 2003. 727 c.
  26. Smits F.M. // Bell Syst. Tech. J. 1958. V. 37. P. 711.
  27. Акименко С.Н., Мамонова Т.И., Орелович О.Л. и др. // ВИНИТИ. Сер. Критические технологии. Мембраны. 2002. Т. 15. С. 21.
  28. Doludenko I.M. // Inorg. Mater.: Appl. Res. 2022. V. 13. P. 531. https://doi.org/10.1134/S2075113322020125
  29. Wakamoto K., Mochizuki Y., Otsuka V. et al. // Materials. 2020. V. 13. P. 4061. https://doi.org/10.3390/ma13184061

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies