EXTRACTION, PURIFICATION, AND CRYSTALLIZATION OF GTPASE ERA FROM STAPHYLOCOCCUS AUREUS
- Authors: Klochkova E.A.1, Islamov D.R.2, Biktimirov A.D.2, Rogachev A.V.3,4, Validov S.Z.2, Bikmullin A.G.5, Simakin A.V.6, Peters G.S.7, Yusupov M.M.8, Usachev K.S.2
-
Affiliations:
- Казанский (Приволжский) федеральныйKazan Federal University, Kazan, 420008 Russia университет
- Kazan (Volga Region) Federal University, Kazan, 420008 Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
- Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
- Kazan Federal University, Kazan, 420008 Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991 Russia
- National Research Centre “Kurchatov Institute,” Moscow, 123098 Russia
- Institut de génétique et de biologie moléculaire et cellulaire, 67400 Illkirch-Graffenstaden, France
- Issue: Vol 68, No 2 (2023)
- Pages: 276-280
- Section: STRUCTURE OF MACROMOLECULAR COMPOUNDS
- URL: https://journals.rcsi.science/0023-4761/article/view/137378
- DOI: https://doi.org/10.31857/S0023476123010137
- EDN: https://elibrary.ru/GBATXG
- ID: 137378
Cite item
Abstract
Protein crystal structure studies are an important tool for drug design. The growth of high-quality crystals suitable for X-ray diffraction is the limiting factor and the bottleneck in obtaining the structural data. Here we report the extraction, purification, and crystallization of the protein GTPase Era from the pathogenic bacterium Staphylococcus aureus. In bacterial cells, GTPase Era acts as a ribosome assembly factor. This enzyme is responsible for the cell growth and division. However, its structure is poorly understood. We obtained crystals of Staphylococcus aureus GTPase Era, which can be used in further structural studies by single-crystal X-ray diffraction analysis.
Keywords
About the authors
E. A. Klochkova
Казанский (Приволжский) федеральныйKazan Federal University, Kazan, 420008 Russia университет
Email: k.usachev@kpfu.ru
Россия, Казань
D. R. Islamov
Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Email: k.usachev@kpfu.ru
Россия, Казань
A. D. Biktimirov
Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Email: k.usachev@kpfu.ru
Россия, Казань
A. V. Rogachev
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia; Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
Email: k.usachev@kpfu.ru
Россия, Долгопрудный; Россия, Дубна
S. Z. Validov
Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Email: k.usachev@kpfu.ru
Россия, Казань
A. G. Bikmullin
Kazan Federal University, Kazan, 420008 Russia
Email: k.usachev@kpfu.ru
Россия, Казань
A. V. Simakin
Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991 Russia
Email: k.usachev@kpfu.ru
Россия, Москва
G. S. Peters
National Research Centre “Kurchatov Institute,” Moscow, 123098 Russia
Email: k.usachev@kpfu.ru
Россия, Москва
M. M. Yusupov
Institut de génétique et de biologie moléculaire et cellulaire, 67400 Illkirch-Graffenstaden, France
Email: k.usachev@kpfu.ru
Франция, Илькирш-Граффенштаден
K. S. Usachev
Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Author for correspondence.
Email: k.usachev@kpfu.ru
Россия, Казань
References
- Stijn Blot R.N., Vandewoude K., Colardyn F. // N. Engl. J. Med. 1998. V. 339 (27). P. 2025. https://doi.org/10.1056/nejm199812313392716
- Jeljaszewicz J., Mlynarczyk G., Mlynarczyk A. // Int. J. Antimicrob. Agents. 2000. V. 16 (4). P. 473. https://doi.org/10.1016/S0924-8579(00)00289-2
- Fierobe L., Decré D., Mùller C. et al. // Clin. Infect. Dis. 1999. V. 29 (5). P. 1231. https://doi.org/10.1086/313454
- Shajani Z., Sykes M.T., Williamson J.R. // Annu. Rev. Biochem. 2011. V. 80. P. 501. https://doi.org/10.1146/annurev-biochem-062608-160432
- Kaczanowska M., Rydén-Aulin M. // Microbiol. Mol. Biol. Rev. 2007. V. 71 (3). P. 477. https://doi.org/10.1128/MMBR.00013-07
- Усачев К.С., Юсупов М.М., Валидов Ш.З. // Биохимия. 2020. Т. 85 (11). С. 1690. https://doi.org/10.1134/S0006297920110115
- Stern S., Powers T., Changchien L.I.-M., Noller H.F. // Science. 1989. V. 244 (4906). P. 783. https://doi.org/10.1126/science.2658053
- Davis J.H., Williamson J.R. // Philos. Trans. R. Soc. 2017. V. 372 (1716). Art. 20160181. https://doi.org/10.1098/rstb.2016.0181
- Bourne H.R. // Philos. Trans. R. Soc. 1995. V. 349 (1329). P. 283. https://doi.org/10.1098/rstb.1995.0114
- Tu C., Zhou X., Tropea J. et al. // Proc. Natl. Acad. Sci. U S A. 2009. V. 106 (35). P. 14843. https://doi.org/10.1073/pnas.0904032106
- Simon Goto, Akira Muto, Hyouta Himeno // J. Biochem. 2013. V. 153 (5). P. 403. https://doi.org/10.1093/jb/mvt022
- Ji X. // Postepy Biochem. 2016. V. 62 (3). P. 335.
- Xiaomei Zhou, Howard K. Peters III, Xintian Li et al. // J. Bacteriol. 2020. V. 202. P. 21. https://doi.org/10.1128/JB.00342-20
- Ren H., Liang Y., Li R. et al. // Acta Cryst. D. 2004. V. 60. P. 1292. https://doi.org/10.1107/S0907444904010467
- Meulenbroek E., Pannu N. // Acta Cryst. F. 2011. V. 68. P. 45. https://doi.org/10.1107/S1744309111045842
- Murugova T.N., Vlasov A.V., Ivankov O.I. et al. // J. Optoelectron. Adv. Mater. 2015. V. 17. P. 1397.
- Kabsch W. // Xds. Acta Cryst. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
- Chen X., Chen S.-M., Powell B. et al. // FEBS Lett. 1999. V. 445. P. 425. https://doi.org/10.1016/S0014-5793(99)00178-7
- Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
- Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596 (7873). P. 583.
- Chen X., Court D.L., Ji X. // PNAS. 1999. V. 15 (96). P. 8396. https://doi.org/10.1073/pnas.96.15.8396
Supplementary files
