Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 62, № 1 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Спектры флуктуаций параметров плазмы солнечного ветра вблизи фронта ударной волны

Сапунова О.В., Бородкова Н.Л., Ермолаев Ю.И., Застенкер Г.Н.

Аннотация

Исследуются характеристики спектров мощности флуктуаций плотности протонов и альфа-частиц вблизи фронта межпланетной и околоземной ударной волны. Были посчитаны частоты излома спектров мощности флуктуаций концентрации протонов и альфа-частиц перед и за рампом околоземной ударной волны (ОЗУВ) и межпланетной ударной волны (МУВ). Для возмущенного солнечного ветра за рампом МУВ частота излома спектра флуктуаций протонов оказалась заметно выше (в среднем 1.3 Гц), чем в невозмущенной области (~0.8–1.0 Гц), что объясняется увеличением как скорости, так и концентрации частиц. В случае альфа-частиц частота излома спектра флуктуаций за фронтом МУВ также повышалась – почти в два раза (от 0.7 до 0.12 Гц). Показано, что среднее значение частоты излома спектров протонов за рампом ОЗУВ меньше (0.6 Гц), чем в солнечном ветре (1.0 Гц), ввиду меньшей скорости. Для альфа-частиц этот эффект статистически не был обнаружен из-за увеличения концентрации (0.11 Гц для обеих областей) в случае ОЗУВ.

Космические исследования. 2024;62(1):3-12
pages 3-12 views

Флуктуации электрического и магнитного полей в плазменном слое хвоста магнитосферы земли по данным MMS

Овчинников И.Л., Найко Д.Ю., Антонова Е.Е.

Аннотация

Проведен статистический анализ спектров флуктуаций электрического и магнитного поля в плазменном слое хвоста магнитосферы Земли по данным спутников миссии Multiscale Magnetosphere Mission (MMS) за 2017–2022 гг. при небольших скоростях движения плазмы. Рассмотрены результаты измерений комплекса аппаратуры FIELDS. Выделены трехчасовые интервалы, во время которых спутники находились внутри плазменного слоя и плазменный параметр β был больше единицы. Проведен анализ более ста тысяч спектров флуктуаций электрического поля прибором EDP/DCE и магнитного поля прибором FGM. Из рассмотрения были исключены интервалы со скоростями плазмы свыше 100 км/с. Для каждого интервала определены показатели наклонов спектров в частотном диапазоне 0.014–16 Гц. Выявлено, что величины показателей спектров существенно отличаются для электрического и магнитного поля. Получены зависимости показателей спектров от усредненных по интервалу уровней флуктуаций электрического и магнитного полей.

Космические исследования. 2024;62(1):13-35
pages 13-35 views

Спектрометр электронов «ТОТЭМ-Э» для проекта «Странник»

Моисеенко Д.А., Шестаков А.Ю., Вайсберг О.Л., Журавлев Р.Н., Митюрин М.В., Моисеев П.П.

Аннотация

Описывается принцип функционирования спектрометра электронов «ТОТЭМ-Э», разрабатываемого для комплекса научной аппаратуры «Странник» (КНА-С) проекта «Резонанс-МКА», приводятся аналитические характеристики конструкторско-доводочного образца прибора, полностью соответствующего штатному образцу в части применяемых электронных компонентов и электронно-оптической схемы, описывается процедура функциональных испытаний прибора, приводится описание структуры и принципов функционирования аппаратно-программного комплекса, созданного для испытаний приборов подобного типа. Конструкция прибора «ТОТЭМ-Э» предлагает новый подход к измерениям потока частиц, позволяющий увеличить достоверность и скорость измерений. Особенностью предложенной схемы представляется возможность одномоментного измерения потоков электронов в плоском сечении в пространстве скоростей в диапазоне энергий от Е0 до 6.5Е0, где Е0 – минимальная регистрируемая прибором энергия частиц. Это достигается использованием двух конических электростатических зеркал, которые отбирают электроны из плоского 360-градусного сечения потока для последующего анализа по энергии и применением координатно-чувствительного детектора для одномоментной регистрации частиц.

Космические исследования. 2024;62(1):36-45
pages 36-45 views

Исследование влияния сезонных и широтных вариаций атомарного кислорода на интенсивность собственного излучения ночных атмосфер Земли и Марса

Антоненко О.В., Кириллов А.С.

Аннотация

В работе используются экспериментальные данные о характерных концентрациях атомарного кислорода в верхних атмосферах Земли и Марса. Рассчитаны значения интегральной светимости полос Герцберга I для средних широт и экваториальной зоны Земли, а также для северных широт и экваториальной зоны Марса. Обсуждается корреляция результатов теоретических расчетов интенсивности свечения полос электронно-возбужденного молекулярного кислорода в атмосфере Земли в спектральном диапазоне 250–370 нм с экспериментальными данными по ночному свечению молекулярного кислорода, полученными с космического шаттла «Дискавери» (STS-53). Представлены рассчитанные значения общей интегральной светимости системы полос Герцберга I в атмосфере Земли для различных сезонов и для точек равноденствия Марса. Показано, что на средних широтах Земли в период низкой солнечной активности максимальные значения интегральной светимости отмечаются в июле, а в экваториальной зоне – в апреле. На северных широтах Марса максимальные значения отмечаются в точке осеннего равноденствия.

Космические исследования. 2024;62(1):46-54
pages 46-54 views

Вспышки молний в облачном слое Венеры обнаружены в ближнем инфракрасном диапазоне

Ксанфомалити Л.В.

Аннотация

Венера была первой среди планет Солнечной системы, в атмосфере которой были обнаружены электрические явления, подобные молниям в атмосфере Земли. Электрические разряды (молнии в атмосфере Венеры) были открыты в 1978 г. в миссиях «Венера-12, -11» и Pioneer Venus по их электромагнитному излучению. Парадокс, однако, заключался в том, что поиски оптических вспышек оставались безуспешными в течение сорока последующих лет. В 2015 г. на орбиту спутника Венеры был выведен аппарат AKATSUKI японского космического агентства JAXA. Он был предназначен для поиска молний и других исследований метеорологии Венеры путем регистрации излучения в выбранных спектральных диапазонах. В 2016 г. орбитальный аппарат AKATSUKI успешно выполнил подробные наблюдения Венеры в ближнем ИК-диапазоне в «окнах прозрачности» атмосферы планеты, а также в ультрафиолетовом и других диапазонах. В статье приводятся результаты альтернативного поиска и успешного обнаружения вспышек молний по данным проекта AKATSUKI, но не в ультрафиолетовом и не в видимом, а в ближнем ИК-диапазоне. Сопоставление результатов расчета, основанного на моделях земных молний, с результатами измерений, выполненных камерой IR2 миссии AKATSUKI на Венере на волне 2.26 мкм, показывает близкое совпадение экспериментальных и расчетных данных.

Космические исследования. 2024;62(1):55-68
pages 55-68 views

Аналитический метод определения условий длительного орбитального существования техногенных наночастиц, инжектируемых в околоземное пространство на высокой круговой орбите

Колесников Е.К., Чернов С.В.

Аннотация

Аналитически на основе использования «дрейфовых» уравнений движения определены условия реализации двух возможных режимов длительного орбитального существования техногенных наночастиц, инжектируемых в околоземное пространство на высокой круговой орбите в области кольцевого тока и не выходящих в процессе орбитального движения за пределы этой области. Показано, что в каждом из указанных режимов ведущий центр наночастицы, не достигая плотных слоев атмосферы, в ведущей плоскости периодически колеблется по отрезку силовой линии геомагнитного поля между «зеркальными точками», которые в одном режиме расположены в Северном и Южном полушариях, а в другом – в том же полушарии, что и точка инжекции. Корректность сформулированных условий подтверждена сравнением с результатами соответствующих численных экспериментов.

Космические исследования. 2024;62(1):69-76
pages 69-76 views

Математическое моделирование электризации космических аппаратов в магнитосферной плазме

Новиков Л.С., Маклецов А.А., Синолиц В.В., Чирская Н.П.

Аннотация

Описан программный комплекс Coulomb, предназначенный для моделирования электризации космических аппаратов (КА) в магнитосферной плазме на высоких и низких околоземных орбитах. Рассмотрены физические механизмы электризации КА и методы математического моделирования этого явления в разных областях космического пространства. Приведены примеры результатов расчета распределения электрического потенциала на поверхности и в окрестности КА для геостационарной орбиты и низких околоземных орбит.

Космические исследования. 2024;62(1):77-88
pages 77-88 views

Стабилизация регулярных прецессий спутника при помощи моментов сил Лоренца

Каленова В.И., Морозов В.М., Рак М.Г.

Аннотация

Рассматривается стабилизация регулярных прецессий спутника на круговой орбите при использовании управляющих моментов, определяемых лоренцевыми силами. Линеаризованная система уравнений движения относится к специальному классу линейных нестационарных систем, приводимых к стационарным. Управляемость исследована как для исходных нестационарных систем, так и на основе приведенных стационарных систем. Построены оптимальные алгоритмы стабилизации. Проведено математическое моделирование предложенных алгоритмов, подтверждающее работоспособность и эффективность предложенной методики.

Космические исследования. 2024;62(1):89-96
pages 89-96 views

Пространственный орбитальный гирокомпас. Вопросы теории и применения

Абезяев И.Н.

Аннотация

Разработанный пространственный (3D) орбитальный гирокомпас позволяет выполнять все необходимые функции угловой ориентации космического аппарата (КА) относительно орбитальной системы координат (ОСК). В этом отношении он ничем не отличается от системы астроориентации (САО), за исключением применения разнотипных датчиков внешней информации. В первом случае это прибор ориентации по Земле (ПОЗ), во втором – астродатчик (АД). Каждая система имеет свои преимущества и недостатки. Преимущество САО – более высокая точность ориентации. Несомненное преимущество 3D-гирокомпаса – возможность длительного управления ориентацией КА без использования данных баллистики. Достаточно высокая функциональность 3D-гирокомпаса делает систему ориентации КА, построенную на его основе, вполне конкурентной по отношению к системам ориентации, построенным по принципу астроориентирования, вследствие чего задача исследования свойств и улучшения точностных характеристик прибора становится актуальной.

Космические исследования. 2024;62(1):97-104
pages 97-104 views

Децентрализованное управление движением роя малых космических аппаратов для удержания коммуникационной связности

Монахова У.В., Шестаков С.А., Маштаков Я.В., Иванов Д.С.

Аннотация

Предложено управление движением роя малых космических аппаратов после кластерного запуска для удержания аппаратов в заданной области и обеспечения межспутниковой связи. Целью алгоритма управления движением является устранение среднего параметра дрейфа и достижение требуемого сдвига относительной траектории вдоль трансверсали. На основе линейной модели относительного движения проведено аналитическое исследование предложенного алгоритма движения. С помощью численного моделирования орбитального движения спутников в рое была проведена верификация аналитических результатов.

Космические исследования. 2024;62(1):105-120
pages 105-120 views

Перспективы и направления развития субтерагерцовой астрономии в Российской Федерации

Лихачев С.Ф., Рудницкий А.Г., Андрианов А.С., Андрианов М.Н., Архипов М.Ю., Барышев А.М., Вдовин В.Ф., Голубев Е.С., Костенко В.И., Ларченкова Т.И., Пилипенко C.В., Подобедов Я.Г., Разананирина Ж.К., Третьяков И.И., Федорчук С.Д., Худченко А.В., Черный Р.А., Щуров М.А.

Аннотация

В работе рассмотрены научные и технические перспективы и возможные направления развития субтерагерцовой астрономии в Российской Федерации. Предложена концепция создания субтерагерцовых инструментов в виде универсальной компактной антенной решетки для размещения на территории России. На базе концепции такой антенной решетки возможна реализация нескольких космических проектов субтерагерцового диапазона нового поколения – космического интерферометра и телескопа, расположенного на поверхности Луны. Наземные антенные решетки смогут выступить в качестве поддержки режима интерферометра со сверхдлинной базой обсерватории «Миллиметрон».

Космические исследования. 2024;62(1):121-138
pages 121-138 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».