CREATION OF EFFECTIVE BIOCATALYTIC NANOSCAVENGERS FOR ORGANOPHOSPHORUS DETOXIFICATION: INFLUENCE OF NANOPARTICLE TYPE
- Authors: Pashirova T.N1,2, Tatarinov D.A2, Gabova M.V1, Batasheva S.N1, Kuryakov V.N3, Shaihutdinova Z.M1,2, Mironov V.F2, Masson P.1
-
Affiliations:
- Kazan (Volga Region) Federal University
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Oil and Gas Research Institute, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 819-832
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376460
- DOI: https://doi.org/10.7868/S3034543X25060132
- ID: 376460
Cite item
Abstract
About the authors
T. N Pashirova
Kazan (Volga Region) Federal University; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: tatyana_pashirova@mail.ru
Kazan, Russia
D. A Tatarinov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
M. V Gabova
Kazan (Volga Region) Federal UniversityKazan, Russia
S. N Batasheva
Kazan (Volga Region) Federal UniversityKazan, Russia
V. N Kuryakov
Oil and Gas Research Institute, Russian Academy of SciencesMoscow, Russia
Z. M Shaihutdinova
Kazan (Volga Region) Federal University; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
V. F Mironov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
P. Masson
Kazan (Volga Region) Federal UniversityKazan, Russia
References
- Raj A., Dubey A., Malla M.A., et al. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods //Jinviron. Manage. 2023. V. 338. P. 117680. https://doi.org/10.1016/j.jenvman.2023.117680
- Fu H., Tan P., Wang R., et al. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies //J. Hazard. Mater. 2022. V. 424. P. 127494. https://doi.org/10.1016/j.jhazmat.2021.127494
- Choi S.K. Nanomaterial-enabled sensors and therapeutic platforms for reactive organophosphates // Nanomaterials. 2021. V. 11. N. 1. P. 1-23. https://doi.org/10.3390/nano11010224
- Yang J., Li H., Zou H., et al. Polymer nanoantidotes // Chem. - A Eur. J. 2023. V. 29. N. 42. P. e202301107. https://doi.org/10.1002/chem.202301107
- Kuchler A., Yoshimoto M., Luginbuhl S., et al. Enzymatic reactions in confined environments // Nature Nanotech. 2016. V. 11. P. 409-420. https://doi.org/10.1038/nnano.2016.54
- Wang Y., Zhao Q., Haag R., et al. Biocatalytic synthesis using self-assembled polymeric nano- and microreactors // Angew. Chemie Int. Ed. 2022. V. 61. N. 52. P. e202213974. https://doi.org/10.1002/anie.202213974
- Rosso A.P., de Oliveira F.A., Guegan P., et al. Evaluation of polymerome permeability as a fundamental aspect towards the development of artificial cells and nanofactories // J. Colloid Interface Sci. 2024. V. 671. P. 88-99. https://doi.org/10.1016/j.jcis.2024.05.133
- Zong W., Shao X., Li J., et al. Synthetic intracellular environments: From basic science to applications // Anal. Chem. 2023. V. 95. N. 1. P. 535-549. https://doi.org/10.1021/acs.analchem.2c04199
- Jiang W., Wu Z., Gao Z., et al. Artificial cells: Past, present and future // ACS Nano 2022. V. 16. N. 10. P. 15705-15733. https://doi.org/10.1021/acsnano.2c06104
- Jiang R., Nilam M., Piselli C., et al. Vesicle-encapsulated chemosensing ensembles allow monitoring of transmembrane uptake coupled with enzymatic reactions // Angew. Chemie Int. Ed. 2025. V. 64. N. 13. P. e202425157. https://doi.org/10.1002/anie.202425157
- Pang Z., Cao Z., Li W., et al. Superwettable interface towards biodetection in confined space // Nano Res. 2024. V. 17. P. 602-617. https://doi.org/10.1007/s12274-023-6108-x
- Sun Z., Hou Y. Micro/Nanorobots as active delivery systems for biomedicine: from self-propulsion to controllable navigation // Adv. Ther. 2022. V. 5. N. 7. P. 2100228. https://doi.org/10.1002/adpt.202100228
- Li J., Esteban-Fernández de Ávila B., Gao W., et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification // Sci. Robot. 2017. V. 2. N. 4. P. eaam6431. https://doi.org/10.1126/scirobotics.aam6431
- Peng Z., Iwabuchi S., Izumi K., et al. Lipid vesicle-based molecular robots // Lab Chip. 2024. V. 24. N. 5. P. 996-1029. https://doi.org/10.1039/D3LC00860F
- Gaur D., Dubey N.C., Tripathi B.P. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells // Adv. Colloid Interface Sci. 2022. V. 299. P. 102566. https://doi.org/10.1016/j.cis.2021.102566
- Sun Q., Shi J., Sun H., et al. Membrane and lumen-compartmentalized polymersomes for biocatalysis and cell mimics // Biomacromolecules. 2023. V. 24. N. 11. P. 4587-4604. https://doi.org/10.1021/acs.biomac.3c00726
- Baumann P., Spulber M., Fischer O., et al. Investigation of Horseradish peroxidase kinetics in an "Organelle-like" environment // Small. 2017. V. 13. N. 17. P. 1603943. https://doi.org/10.1002/smll.201603943
- Chauhan K., Zirate-Romero A., Sengar P., et al. Catalytic kinetics considerations and molecular tools for the design of multienzymatic caascade nanoreactors // ChemCatChem. 2021. V. 13. N. 17. P. 3732-3748. https://doi.org/10.1002/cctc.202100604
- Shajathdinova Z., Pashirova T., Masson P. Kinetic processes in enzymatic nanoreactors for in vivo detoxification // Biomedicines. 2022. V. 10. N. 4. P. 784. https://doi.org/10.3390/biomedicines10040784
- Poirier L., Pinault L., Armstrong N., et al. Evaluation of a robust engineered enzyme towards organophosphorus insecticide bioremediation using planarians as biosensors // Chem. Biol. Interact. 2019. V. 306. P. 96-103. https://doi.org/10.1016/j.cbi.2019.04.013
- Rémy B., Plener L., Poirier L., et al. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications // Sci. Rep. 2016. V. 6. P. 37780. https://doi.org/10.1038/srep37780
- Poirier L., Brun L., Jacquet P., et al. Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival // Sci. Rep. 2017. V. 7. P. 15194. https://doi.org/10.1038/s41598-017-15209-8
- Pashirova T., Shaihutdinova Z., Mansurova M., et al. Enzyme nanoreactor for in vivo detoxification of organophosphates // ACS Appl. Mater. Interfaces. 2022. V. 14. N. 17. P. 19241-19252. https://doi.org/10.1021/acsami.2c03210
- Pashirova T., Shaihutdinova Z., Tatarinov D., et al. Tuning the envelope structure of enzyme nanoreactors for in vivo detoxification of organophosphates // Int. J. Mol. Sci. 2023. V. 24. N. 21. P. 15756. https://doi.org/10.3390/ijms242115756
- Pashirova T., Shaihutdinova Z., Tatarinov D., et al. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice // Int. J. Biol. Macromol. 2024. V. 282. P. 137305. https://doi.org/10.1016/j.ijbiomac.2024.137305
- O'Neil C.P., Suzuki T., Demurtas D., et al. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration // Langmuir. 2009. V. 25. N. 16. P. 9025-9029. https://doi.org/10.1021/la900779t
- Jacquet P., Hiblot J., Daudé D., et al. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase // Sci. Rep. 2017. V. 7. P. 16745. https://doi.org/10.1038/s41598-017-16841-0
- Jacquet P., Billot R., Shimon A., et al. Changes in active site loop conformation relate to the transition toward a novel enzymatic activity // JACS Au. 2024. V. 4. N. 5. P. 1941-1953. https://doi.org/10.1021/jacsau.4c00179
- Kumar M., Grzelakowski M., Zilles J., et al. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z // Proc. Natl. Acad. Sci. 2007. V. 104. N. 52. P. 20719-20724. https://doi.org/10.1073/pnas.0708762104
- Pashirova T.N., Zueva I. V., Petrov K.A., et al. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactor 2-PAM as encapsulated drug model // Colloids Surfaces B Biointerfaces. 2018. V. 171. P. 358-367. https://doi.org/10.1016/j.colsurfb.2018.07.049
- Fangueiro J.F., Andreani T., Fernandes L., et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation // Colloids Surfaces B Biointerfaces. 2014. V. 123. P. 452-460. https://doi.org/10.1016/j.colsurfb.2014.09.042
- Popov K., Vainer Y., Silaev G., et al. Potential nano/microcenters of crystal nucleation in reagent-grade purity solvents and their differentiation by fluorescent-tagged antiscalant // Crystals. 2024. V. 14. N. 7. P. 650. https://doi.org/10.3390/cryst14070653
- Maffeis V., Skowicki M., Wolf K.M.P., et al. Advancing the design of artificial nano- organelles for targeted cellular detoxification of reactive oxygen species // Nano Lett. 2024. V. 24. N. 9. P. 2698-2704. https://doi.org/10.1021/acs.nanolett.3c03884
- Itel F., Chami M., Najer A., et al. Molecular organization and dynamics in polymerome membranes: lateral diffusion study // Macromolecules. 2014. V. 47. N. 21. P. 7588-7596. https://doi.org/10.1021/ma5015403
- Knaak J. B., Dary C. C., Power F. Physicochemical and biological data for the development of predictive organophosphorus pesticide QSARs and BPBK/PD models for human risk assessment // Crit. Rev. Toxicol. 2004. V. 34 N. 2. P. 143-207. https://doi.org/10.1080/10408440490432250
- Eyer F., Eyer P. Enzyme-based assay for quantification of paraoxon in blood of parathion poisoned patients // Hum Exp Toxicol. 1998. V. 17 N. 12. P. 645-651. https://doi.org/10.1177/096032719801701201
- Allen S.D., Liu Y.- G., Bobbala S., et al. Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration // Nano Res. 2018. V. 11. P. 5689-5703. https://doi.org/10.1007/s12274-018-2069-x
- Zhu S., Li S., Escuin-Ordinas H., et al. Accelerated wound healing by injectable star poly(ethylene glycol)- b-poly(propylene sulfide) scaffolds loaded with poorly water-soluble drugs // J. Control. Release. 2018. V. 282. P. 156-165. https://doi.org/10.1016/j.jconrel.2018.05.006
- Velluto D., Bojadzic D., De Toni T., et al. Drug-Integrating Amphiphilic Nanomaterial Assemblies: 1. Spatiotemporal control of cyclosporine delivery and activity using nanomicelles and nanofibrils // J. Control. Release. 2021. V. 329. P. 955-970. https://doi.org/10.1016/j.jconrel.2020.10.026
- Discher D.E., Eisenberg A. Polymer vesicles // Science. 2002. V. 297. N. 5583. P. 967-973. https://doi.org/10.1126/science.1074972
- Cerritelli S., Velluto D., Hubbell J.A., et al. PEG- SS- PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery // Biomacromolecules. 2007. V. 8. N. 6. P. 1966-1972. https://doi.org/10.1021/bm070085x
- Velluto D., Demurtas D., Hubbell J.A. PEG- b- PPS diblock copolymer aggregates for hydrophobic drusolubilization and release: cyclosporin A as an example // Mol. Pharm. 2008. V. 5. N. 4. P. 632-642. https://doi.org/10.1021/mp7001297
- Scott E.A., Stano A., Gillard M., et al. Dendritic cell activation and T cell priming with adjuvant- and antigen- loaded oxidation- sensitive polymersomes // Biomaterials. 2012. V. 33. N. 26. P. 6211-6219. https://doi.org/10.1016/j.biomaterials.2012.04.060
- Luisi P.L., Souza T.P. de, Stano P. Vesicle behavior: insearch of explanations // J. Phys. Chem. B. 2008. V. 112. N. 46. P. 14655-14664. https://doi.org/10.1021/jp8028598
- Pashirova T.N., Bogdanov A.V., Masson P. Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging // Chem. Biol. Interact. 2021. V. 346. P. 109577. https://doi.org/10.1016/j.cbi.2021.109577
- Belluati A., Craciun I., Liu J., et al. Nanoscale enzymatic compartments in tandem support cascade reactions in vitro // Biomacromolecules. 2018. V. 19. N. 10. P. 4023-4033. https://doi.org/10.1021/acs.biomac.8b01019
- Varlas S., Foster J.C., Georgiou P.G., et al. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly // Nanoscale. 2019. V. 11. № 26. P. 12643-12654. https://doi.org/10.1039/C9NR02507C
- Balasubramanian V., Correia A., Zhang H., et al. Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle-like functions // Adv. Mater. 2017. V. 29. № 11. P. 1605375. https://doi.org/10.1002/adma.201605375
- Chen Q., Schönherr H., Vancso G.J. Block-copolymer vesicles as nanoreactors for enzymatic reactions // Small. 2009. V. 5. № 12. P. 1436-144. https://doi.org/10.1002/smll.200801455
- Chen Q., Rausch K.G., Schönherr H., et al. α-Chymotrypsin-catalyzed reaction confined in block-copolymer vesicles // ChemPhysChem. 2010. V. 11. № 16. P. 3534-3540. https://doi.org/10.1002/cphc.201000429
- Sunami T., Hosoda K., Suzuki H., et al. Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions // Langmuir. 2010. V. 26. № 11. P. 8544-8551. https://doi.org/10.1021/la904569m
Supplementary files


