CREATION OF EFFECTIVE BIOCATALYTIC NANOSCAVENGERS FOR ORGANOPHOSPHORUS DETOXIFICATION: INFLUENCE OF NANOPARTICLE TYPE
- Autores: Pashirova T.N1,2, Tatarinov D.A2, Gabova M.V1, Batasheva S.N1, Kuryakov V.N3, Shaihutdinova Z.M1,2, Mironov V.F2, Masson P.1
-
Afiliações:
- Kazan (Volga Region) Federal University
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Oil and Gas Research Institute, Russian Academy of Sciences
- Edição: Volume 87, Nº 6 (2025)
- Páginas: 819-832
- Seção: Articles
- ##submission.dateSubmitted##: 27.01.2026
- ##submission.datePublished##: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376460
- DOI: https://doi.org/10.7868/S3034543X25060132
- ID: 376460
Citar
Resumo
Palavras-chave
Sobre autores
T. Pashirova
Kazan (Volga Region) Federal University; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: tatyana_pashirova@mail.ru
Kazan, Russia
D. Tatarinov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
M. Gabova
Kazan (Volga Region) Federal UniversityKazan, Russia
S. Batasheva
Kazan (Volga Region) Federal UniversityKazan, Russia
V. Kuryakov
Oil and Gas Research Institute, Russian Academy of SciencesMoscow, Russia
Z. Shaihutdinova
Kazan (Volga Region) Federal University; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
V. Mironov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
P. Masson
Kazan (Volga Region) Federal UniversityKazan, Russia
Bibliografia
- Raj A., Dubey A., Malla M.A., et al. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods //Jinviron. Manage. 2023. V. 338. P. 117680. https://doi.org/10.1016/j.jenvman.2023.117680
- Fu H., Tan P., Wang R., et al. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies //J. Hazard. Mater. 2022. V. 424. P. 127494. https://doi.org/10.1016/j.jhazmat.2021.127494
- Choi S.K. Nanomaterial-enabled sensors and therapeutic platforms for reactive organophosphates // Nanomaterials. 2021. V. 11. N. 1. P. 1-23. https://doi.org/10.3390/nano11010224
- Yang J., Li H., Zou H., et al. Polymer nanoantidotes // Chem. - A Eur. J. 2023. V. 29. N. 42. P. e202301107. https://doi.org/10.1002/chem.202301107
- Kuchler A., Yoshimoto M., Luginbuhl S., et al. Enzymatic reactions in confined environments // Nature Nanotech. 2016. V. 11. P. 409-420. https://doi.org/10.1038/nnano.2016.54
- Wang Y., Zhao Q., Haag R., et al. Biocatalytic synthesis using self-assembled polymeric nano- and microreactors // Angew. Chemie Int. Ed. 2022. V. 61. N. 52. P. e202213974. https://doi.org/10.1002/anie.202213974
- Rosso A.P., de Oliveira F.A., Guegan P., et al. Evaluation of polymerome permeability as a fundamental aspect towards the development of artificial cells and nanofactories // J. Colloid Interface Sci. 2024. V. 671. P. 88-99. https://doi.org/10.1016/j.jcis.2024.05.133
- Zong W., Shao X., Li J., et al. Synthetic intracellular environments: From basic science to applications // Anal. Chem. 2023. V. 95. N. 1. P. 535-549. https://doi.org/10.1021/acs.analchem.2c04199
- Jiang W., Wu Z., Gao Z., et al. Artificial cells: Past, present and future // ACS Nano 2022. V. 16. N. 10. P. 15705-15733. https://doi.org/10.1021/acsnano.2c06104
- Jiang R., Nilam M., Piselli C., et al. Vesicle-encapsulated chemosensing ensembles allow monitoring of transmembrane uptake coupled with enzymatic reactions // Angew. Chemie Int. Ed. 2025. V. 64. N. 13. P. e202425157. https://doi.org/10.1002/anie.202425157
- Pang Z., Cao Z., Li W., et al. Superwettable interface towards biodetection in confined space // Nano Res. 2024. V. 17. P. 602-617. https://doi.org/10.1007/s12274-023-6108-x
- Sun Z., Hou Y. Micro/Nanorobots as active delivery systems for biomedicine: from self-propulsion to controllable navigation // Adv. Ther. 2022. V. 5. N. 7. P. 2100228. https://doi.org/10.1002/adpt.202100228
- Li J., Esteban-Fernández de Ávila B., Gao W., et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification // Sci. Robot. 2017. V. 2. N. 4. P. eaam6431. https://doi.org/10.1126/scirobotics.aam6431
- Peng Z., Iwabuchi S., Izumi K., et al. Lipid vesicle-based molecular robots // Lab Chip. 2024. V. 24. N. 5. P. 996-1029. https://doi.org/10.1039/D3LC00860F
- Gaur D., Dubey N.C., Tripathi B.P. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells // Adv. Colloid Interface Sci. 2022. V. 299. P. 102566. https://doi.org/10.1016/j.cis.2021.102566
- Sun Q., Shi J., Sun H., et al. Membrane and lumen-compartmentalized polymersomes for biocatalysis and cell mimics // Biomacromolecules. 2023. V. 24. N. 11. P. 4587-4604. https://doi.org/10.1021/acs.biomac.3c00726
- Baumann P., Spulber M., Fischer O., et al. Investigation of Horseradish peroxidase kinetics in an "Organelle-like" environment // Small. 2017. V. 13. N. 17. P. 1603943. https://doi.org/10.1002/smll.201603943
- Chauhan K., Zirate-Romero A., Sengar P., et al. Catalytic kinetics considerations and molecular tools for the design of multienzymatic caascade nanoreactors // ChemCatChem. 2021. V. 13. N. 17. P. 3732-3748. https://doi.org/10.1002/cctc.202100604
- Shajathdinova Z., Pashirova T., Masson P. Kinetic processes in enzymatic nanoreactors for in vivo detoxification // Biomedicines. 2022. V. 10. N. 4. P. 784. https://doi.org/10.3390/biomedicines10040784
- Poirier L., Pinault L., Armstrong N., et al. Evaluation of a robust engineered enzyme towards organophosphorus insecticide bioremediation using planarians as biosensors // Chem. Biol. Interact. 2019. V. 306. P. 96-103. https://doi.org/10.1016/j.cbi.2019.04.013
- Rémy B., Plener L., Poirier L., et al. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications // Sci. Rep. 2016. V. 6. P. 37780. https://doi.org/10.1038/srep37780
- Poirier L., Brun L., Jacquet P., et al. Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival // Sci. Rep. 2017. V. 7. P. 15194. https://doi.org/10.1038/s41598-017-15209-8
- Pashirova T., Shaihutdinova Z., Mansurova M., et al. Enzyme nanoreactor for in vivo detoxification of organophosphates // ACS Appl. Mater. Interfaces. 2022. V. 14. N. 17. P. 19241-19252. https://doi.org/10.1021/acsami.2c03210
- Pashirova T., Shaihutdinova Z., Tatarinov D., et al. Tuning the envelope structure of enzyme nanoreactors for in vivo detoxification of organophosphates // Int. J. Mol. Sci. 2023. V. 24. N. 21. P. 15756. https://doi.org/10.3390/ijms242115756
- Pashirova T., Shaihutdinova Z., Tatarinov D., et al. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice // Int. J. Biol. Macromol. 2024. V. 282. P. 137305. https://doi.org/10.1016/j.ijbiomac.2024.137305
- O'Neil C.P., Suzuki T., Demurtas D., et al. A novel method for the encapsulation of biomolecules into polymersomes via direct hydration // Langmuir. 2009. V. 25. N. 16. P. 9025-9029. https://doi.org/10.1021/la900779t
- Jacquet P., Hiblot J., Daudé D., et al. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase // Sci. Rep. 2017. V. 7. P. 16745. https://doi.org/10.1038/s41598-017-16841-0
- Jacquet P., Billot R., Shimon A., et al. Changes in active site loop conformation relate to the transition toward a novel enzymatic activity // JACS Au. 2024. V. 4. N. 5. P. 1941-1953. https://doi.org/10.1021/jacsau.4c00179
- Kumar M., Grzelakowski M., Zilles J., et al. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z // Proc. Natl. Acad. Sci. 2007. V. 104. N. 52. P. 20719-20724. https://doi.org/10.1073/pnas.0708762104
- Pashirova T.N., Zueva I. V., Petrov K.A., et al. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactor 2-PAM as encapsulated drug model // Colloids Surfaces B Biointerfaces. 2018. V. 171. P. 358-367. https://doi.org/10.1016/j.colsurfb.2018.07.049
- Fangueiro J.F., Andreani T., Fernandes L., et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation // Colloids Surfaces B Biointerfaces. 2014. V. 123. P. 452-460. https://doi.org/10.1016/j.colsurfb.2014.09.042
- Popov K., Vainer Y., Silaev G., et al. Potential nano/microcenters of crystal nucleation in reagent-grade purity solvents and their differentiation by fluorescent-tagged antiscalant // Crystals. 2024. V. 14. N. 7. P. 650. https://doi.org/10.3390/cryst14070653
- Maffeis V., Skowicki M., Wolf K.M.P., et al. Advancing the design of artificial nano- organelles for targeted cellular detoxification of reactive oxygen species // Nano Lett. 2024. V. 24. N. 9. P. 2698-2704. https://doi.org/10.1021/acs.nanolett.3c03884
- Itel F., Chami M., Najer A., et al. Molecular organization and dynamics in polymerome membranes: lateral diffusion study // Macromolecules. 2014. V. 47. N. 21. P. 7588-7596. https://doi.org/10.1021/ma5015403
- Knaak J. B., Dary C. C., Power F. Physicochemical and biological data for the development of predictive organophosphorus pesticide QSARs and BPBK/PD models for human risk assessment // Crit. Rev. Toxicol. 2004. V. 34 N. 2. P. 143-207. https://doi.org/10.1080/10408440490432250
- Eyer F., Eyer P. Enzyme-based assay for quantification of paraoxon in blood of parathion poisoned patients // Hum Exp Toxicol. 1998. V. 17 N. 12. P. 645-651. https://doi.org/10.1177/096032719801701201
- Allen S.D., Liu Y.- G., Bobbala S., et al. Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration // Nano Res. 2018. V. 11. P. 5689-5703. https://doi.org/10.1007/s12274-018-2069-x
- Zhu S., Li S., Escuin-Ordinas H., et al. Accelerated wound healing by injectable star poly(ethylene glycol)- b-poly(propylene sulfide) scaffolds loaded with poorly water-soluble drugs // J. Control. Release. 2018. V. 282. P. 156-165. https://doi.org/10.1016/j.jconrel.2018.05.006
- Velluto D., Bojadzic D., De Toni T., et al. Drug-Integrating Amphiphilic Nanomaterial Assemblies: 1. Spatiotemporal control of cyclosporine delivery and activity using nanomicelles and nanofibrils // J. Control. Release. 2021. V. 329. P. 955-970. https://doi.org/10.1016/j.jconrel.2020.10.026
- Discher D.E., Eisenberg A. Polymer vesicles // Science. 2002. V. 297. N. 5583. P. 967-973. https://doi.org/10.1126/science.1074972
- Cerritelli S., Velluto D., Hubbell J.A., et al. PEG- SS- PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery // Biomacromolecules. 2007. V. 8. N. 6. P. 1966-1972. https://doi.org/10.1021/bm070085x
- Velluto D., Demurtas D., Hubbell J.A. PEG- b- PPS diblock copolymer aggregates for hydrophobic drusolubilization and release: cyclosporin A as an example // Mol. Pharm. 2008. V. 5. N. 4. P. 632-642. https://doi.org/10.1021/mp7001297
- Scott E.A., Stano A., Gillard M., et al. Dendritic cell activation and T cell priming with adjuvant- and antigen- loaded oxidation- sensitive polymersomes // Biomaterials. 2012. V. 33. N. 26. P. 6211-6219. https://doi.org/10.1016/j.biomaterials.2012.04.060
- Luisi P.L., Souza T.P. de, Stano P. Vesicle behavior: insearch of explanations // J. Phys. Chem. B. 2008. V. 112. N. 46. P. 14655-14664. https://doi.org/10.1021/jp8028598
- Pashirova T.N., Bogdanov A.V., Masson P. Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging // Chem. Biol. Interact. 2021. V. 346. P. 109577. https://doi.org/10.1016/j.cbi.2021.109577
- Belluati A., Craciun I., Liu J., et al. Nanoscale enzymatic compartments in tandem support cascade reactions in vitro // Biomacromolecules. 2018. V. 19. N. 10. P. 4023-4033. https://doi.org/10.1021/acs.biomac.8b01019
- Varlas S., Foster J.C., Georgiou P.G., et al. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly // Nanoscale. 2019. V. 11. № 26. P. 12643-12654. https://doi.org/10.1039/C9NR02507C
- Balasubramanian V., Correia A., Zhang H., et al. Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle-like functions // Adv. Mater. 2017. V. 29. № 11. P. 1605375. https://doi.org/10.1002/adma.201605375
- Chen Q., Schönherr H., Vancso G.J. Block-copolymer vesicles as nanoreactors for enzymatic reactions // Small. 2009. V. 5. № 12. P. 1436-144. https://doi.org/10.1002/smll.200801455
- Chen Q., Rausch K.G., Schönherr H., et al. α-Chymotrypsin-catalyzed reaction confined in block-copolymer vesicles // ChemPhysChem. 2010. V. 11. № 16. P. 3534-3540. https://doi.org/10.1002/cphc.201000429
- Sunami T., Hosoda K., Suzuki H., et al. Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions // Langmuir. 2010. V. 26. № 11. P. 8544-8551. https://doi.org/10.1021/la904569m
Arquivos suplementares

