Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of a Titania Semiconductor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The photocatalytic reduction reactions of CO2 in aqueous suspensions of titanium dioxide (TiO2) semiconductor with photodeposited Pt and Cu cocatalysts have been studied. It has been found that the composition and amount of CO2 reduction products significantly depend on the nature of the cocatalyst supported onto TiO2. A mechanism for the formation of CO2 reduction products has been proposed.

About the authors

T. S. Dzhabiev

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

L. V. Avdeeva

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

T. A. Savinykh

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Z. M. Dzhabieva

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: dzhabiev@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

References

  1. Катализ в С1-химии / Под. ред. Кайма В. Л.: Химия, 1987. 296 с.
  2. Zhong W., Sa R., Li L., et all // J. Am. Chem. Soc. 2019. V. 141. P. 7615. https://doi.org/10.1021/jacs.9b02997
  3. White J.L., Baruch M.F., Pander III J.E., et all // Chem. Rev. 2015. V. 115. P. 12888. https://doi.org/10.1021/acs.chemrev.5b00370
  4. Li X., Yu J., Jaroniec M., Chen X. // Chem. Rev. 2019. V. 119. P. 3962. https://doi.org/10.1021/acs.chemrev.8b00400
  5. Takeda H., Cometto C., Ishitani O., Robert M. // ACS Catal. 2017. 7. P. 70. https://doi.org/10.1021/acscatal.6b02181
  6. Francke R., Schille B., Roemelt M. // Chem. Rev. 2018. V. 118. P. 4631. https://doi.org/10.1021/acs.chemrev.7b00459
  7. Rao H., Schmidt L., Bonin J., Robert M. // Nature. 2017. V. 548. P.74. https://doi.org/10.1038/nature23016
  8. Fang Y., Wang X. // Chem. Commun. 2018. V. 54. P. 5674. https:doi.org/https://doi.org/10.1039/C8CC02046A
  9. Maeda K., Kuriki R., Zhang M., et all // J. Mater. Chem., A. 2014. 2. P. 15146. https://doi.org/10.1039/C4TA03128H
  10. Kuhl K.P., Cave E.R., Abram D.N., Jaramillo T.F. // Energy Environ. Sci. 2012. 5. P. 7050. https://doi.org/10.1039/C2EE21234J
  11. Arquer F.P.G.D., Bushuyev O.S., Luna P.D., et all // Adv. Mater. 2018. 30. 1802858. https://doi.org/10.1002/adma.201802858
  12. Gao S., Lin Y., Jiao X., et all // Nature. 2016. V. 529. P. 68. https://doi.org/10.1038/nature16455
  13. Jouny M., Luc W., Jiao F. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2165. https://doi.org/10.1021/acs.iecr.7b03514
  14. Kuilin Lv., Yanchen Fan, Ying Zhu, et all // J. Mater. Chem., A. 2018. V. 6. № 12. P. 5025. https://doi.org/10.1039/C7TA10802H
  15. Lee S., Park G., Lee J. // ACS Catal. 2017. 7. P. 8594. https://doi.org/10.1021/acscatal.7b02822
  16. Xu S., Carter E.A. // J. Am. Chem. Soc. 2018. V. 140. 28. P. 8732. https://doi.org/10.1021/jacs.8b03774
  17. Brown E.S., Peczonczyk S.L., Wang Z., Maldonado S. // J. Phys. Chem., C. 2014. V. 118. 22. P. 11593. https://doi.org/10.1021/jp503147p
  18. Beiler A.M., Khusnutdinova D., Jacob S.I., Moore G.F. // ACS Appl. Mater. Interfaces. 2016. 8. 15. P. 10038. https://doi.org/10.1021/acsami.6b01557
  19. Keith J.A., Carter E.A. // J. Am. Chem. Soc. 2012. V. 134. 18. P. 7580. https://doi.org/10.1021/ja300128e
  20. Lu X., Huang S., Diaz M.B., et all // IEEE Journal of Photovoltaics. 2012. 2. 214. https://doi.org/10.1109/JPHOTOV.2011.2182180
  21. Navalón S., Dhakshinamoorthy A., Álvaro M. // ChemSusChem. 2013. P. 562. https://doi.org/10.1002/cssc.201200670
  22. Huygh S., Bogaerts A., Neyts E.C. // J. Phys. Chem., C. 2016. V. 120. 38. P. 21659. https://doi.org/10.1021/acs.jpcc.6b07459
  23. Yongfei Ji, Yi Luo // J. Am. Chem. Soc. 2016. V. 138. 49. P. 15896. https://doi.org/10.1021/jacs.6b05695
  24. Xie S., Wang Y., Zhang Q., et all // Chem. Commun. 2013. 49. P. 2451. https://doi.org/10.1039/C3CC00107E
  25. White J.L., Baruch M.F., Pander III J.E., et all // Chem. Rev. 2015. V. 115. 23. P. 12888. https://doi.org/10.1021/acs.chemrev.5b00370
  26. Chang X., Wang T., Gong J. // Energy Environ. Sci. 2016. 9. P. 2177. https://doi.org/10.1039/C6EE00383D
  27. Mao J., Li K., Peng T. // Catal. Sci. Technol. 2013. 3. № 10. P. 2481. https://doi.org/10.1039/C3CY00345K
  28. Горощенко Я.Г. Химия титана. Киев: Наукова думка, 1970. 416 с.
  29. Lehn J.-M., Sauvage J.-P., Ziessel R. // Nouv. J. Chim. 1984. V. 4. № 11. P. 623.
  30. Dimitrijevic N.M., Vijayan B.K., Poluektov O.G., et al. // J. Am. Chem. Soc. 2011. V. 133. P. 3964. https://doi.org/10.1021/ja108791u
  31. Hemminger J.C., Carr R., Somorjai G.A. // Chem. Phys. Lett. 1978. V. 57. 1. P. 100. https://doi.org/10.1016/0009-2614(78)80359-5
  32. Haas T., Pritchard J. // J. Chem. Soc., Faraday Trans. 1990. V. 86. № 10. P. 1889. https://doi.org/10.1039/FT9908601889
  33. Cook R.L., MacDuff R.C., Sammells A.F. // Electrochem. Soc. 1988. V. 135. № 6. P. 1320. https://doi.org/10.1149/1.2095972

Supplementary files


Copyright (c) 2023 Т.С. Джабиев, Л.В. Авдеева, Т.А. Савиных, З.М. Джабиева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies