Uniformity of electron beam cross-linking of polyethylene depending on the distribution of the absorbed radiation dose

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The crosslinking of polyethylene of pipe grades via 900 keV electrons at an absorbed dose of 50 to 400 kGy in the presence of antioxidants and a crosslinking agent was studied. The degree of crosslinking of polyethylene was measured by the content of the gel fraction, determined by its extraction in xylene. It was shown that in all cases the 60% degree of cross-linking is achieved at a dose of about 100 kGy. It is advisable to combine the standard method for determining the gel fraction with visual inspection of samples to identify the conditions for the formation of an excessively low-melting material. It has been shown that ±7% crosslinking degree non-uniformity can be achieved with dose non-uniformity of up to ±50%.

About the authors

A. V. Popova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
Moscow, Russia

K. A. Artamonova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Moscow, Russia

A. V. Bludenko

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Moscow, Russia

E. M. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Moscow, Russia

S. I. Vlasov

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Moscow, Russia

A. V. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
Moscow, Russia

References

  1. Burillo G., Clough R.L., Czvikovszky T., Guven O., Le Moel A., Liu W., Singh A., Yang J., Zaharescu T. // Radiat. Phys. Chem. 2002. V. 64. P. 41.
  2. Dorigato A. // Adv. Ind. Eng. Polym. Res. 2021. V. 4. P. 53.
  3. Geyer R., Jambeck J.R., Law K.L. // Sci. Adv. 2017. V. 3. P. e1700782.
  4. Chmielewski A.G. // Radiat. Phys. Chem., 2023. V. 213. P. 111233.
  5. Ponomarev A.V., Gohs U., Ratnam C.T., Horak C. // Radiat. Phys. Chem. 2022. V. 201. P. 110397.
  6. Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 194.
  7. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. NY: Wiley, 1994.
  8. Pikaev A.K. // High Energy Chem. 2000. V. 34.
  9. Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
  10. Albrecht V., Simon F., Reinsch E., Schünemann R., Gohs U., Kretzschmar B., Peuker U.A. // Recover. Recycl. Technol. Worldw. 2016. V. 2. P. 36.
  11. Cleland M., Galloway R., Genin F., Lindholm M. // Radiat. Phys. Chem. 2002. V. 63. P. 729.
  12. Perrin C., Griseri V., Laurent C. // IEEE Trans. Dielectr. Electr. Insul. 2008. V. 15. P. 958.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).