Равномерность электронно-лучевого сшивания полиэтилена в зависимости от распределения поглощенной дозы излучения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано сшивание полиэтилена трубных сортов под действием 900 кэВ электронов при поглощенной дозе от 50 до 400 кГр в присутствии антиоксидантов и сшивающего агента. Степень сшивания полиэтилена измерялась по содержанию гель-фракции, определяемой путем его экстракции в ксилоле. Показано, что во всех случаях степень сшивания 60% достигается при дозе около 100 кГр. Стандартную методику определения гель-фракции целесообразно сочетать с визуальным контролем образцов для выявления условий образования чрезмерно легкоплавкого материала. Показано, что неравномерность степени сшивания на уровне ±7% может достигаться при неравномерности дозы до ±50%.

Об авторах

А. В. Попова

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Email: ponomarev@ipc.rssi.ru
Москва, Россия

К. А. Артамонова

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Москва, Россия

А. В. Блуденко

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Москва, Россия

Е. М. Холодкова

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Москва, Россия

С. И. Власов

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Москва, Россия

А. В. Пономарев

ФГБУН “Институт физической химии и электрохимии им. А.Н. Фрумкина” РАН

Email: ponomarev@ipc.rssi.ru
Москва, Россия

Список литературы

  1. Burillo G., Clough R.L., Czvikovszky T., Guven O., Le Moel A., Liu W., Singh A., Yang J., Zaharescu T. // Radiat. Phys. Chem. 2002. V. 64. P. 41.
  2. Dorigato A. // Adv. Ind. Eng. Polym. Res. 2021. V. 4. P. 53.
  3. Geyer R., Jambeck J.R., Law K.L. // Sci. Adv. 2017. V. 3. P. e1700782.
  4. Chmielewski A.G. // Radiat. Phys. Chem., 2023. V. 213. P. 111233.
  5. Ponomarev A.V., Gohs U., Ratnam C.T., Horak C. // Radiat. Phys. Chem. 2022. V. 201. P. 110397.
  6. Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 194.
  7. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. NY: Wiley, 1994.
  8. Pikaev A.K. // High Energy Chem. 2000. V. 34.
  9. Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
  10. Albrecht V., Simon F., Reinsch E., Schünemann R., Gohs U., Kretzschmar B., Peuker U.A. // Recover. Recycl. Technol. Worldw. 2016. V. 2. P. 36.
  11. Cleland M., Galloway R., Genin F., Lindholm M. // Radiat. Phys. Chem. 2002. V. 63. P. 729.
  12. Perrin C., Griseri V., Laurent C. // IEEE Trans. Dielectr. Electr. Insul. 2008. V. 15. P. 958.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).