Charge transfer complexes based on hexafluorophosphate 2,4_diethyl-9_oxo-10- (4–heptyloxyphenyl) – 9N-thioxanthenonium and thiazole derivatives as photoinitiators of holographic free-radical photopolymerisation
- Authors: Derevyanko D.I.1,2, Shelkovnikov V.V.1,3, Kovalskii V.Y.4
-
Affiliations:
- Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State Technical University
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 58, No 5 (2024)
- Pages: 369-378
- Section: ФОТОХИМИЯ
- URL: https://journals.rcsi.science/0023-1193/article/view/280931
- DOI: https://doi.org/10.31857/S0023119324050045
- EDN: https://elibrary.ru/TYAOPA
- ID: 280931
Cite item
Abstract
A photoinitiating system based on a charge transfer complex (CTC) between a cationic sulfonium salt derivative synthesised on the basis of thioxanthene-9–one and heterocyclic nitrogen- and sulphur-containing donor compounds of thiazole derivatives has been developed. It was found that the absorption bands of the formed CTCs lie in the blue region of the visible spectrum, and the presence of the phenolic ring in conjugation with the thiazole fragment leads to a hyperchromic effect in the absorption spectrum of the complexes. The molecular composition 1: 1 of CTC was confirmed by using the isomolar series method. The modified Benesi–Hildebrand equation was used to calculate the complexation constant (Kas (278 K) = 48.1 l / mol). Using the Vant Hoff equation, thermodynamic parameters were calculated: enthalpy (ΔH = –11.5kJ / mol), entropy (ΔS° = –9.3 J / mol∙K) and Gibbs energy (ΔG° = –8.95 kJ / mol). According to the negative enthalpy change, the reaction of CTC formation is an exothermic process. The formed complexes possess photosensitivity in the spectral region of the charge transfer band (400-500nm), which allows to use them as sensitizers of holographic photopolymer materials for recording holograms by laser radiation λ = 457nm with high diffraction efficiency ≈75 %.
About the authors
D. I. Derevyanko
Vorozhtsov Novosibirsk Institute of Organic Chemistry; Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: Derevyanko@nioch.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
V. V. Shelkovnikov
Vorozhtsov Novosibirsk Institute of Organic Chemistry; Novosibirsk State Technical University
Email: Derevyanko@nioch.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
V. Yu. Kovalskii
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences
Email: Derevyanko@nioch.nsc.ru
Russian Federation, Novosibirsk
References
- Ibrahim-Ouali M., Dumur F. // European Polymer Journal. 2021. 158. p. 110688.
- Kolyakina E.V., Alyeva A.B., Sazonova E.V., Zakharychev E.A., Grishin D.F. // High molecular weight compounds (Series B). 2020. V. 62. № 4. P. 253
- Tomal W., Ortyl J. // Polymers. 2020. V. 12. № 5. P. 1073
- Nekipelova T.D., Khodot E.N., Deeva Y.S., Levina I.I., Timokhina E.N. Kostyukov A.A., Kuzmin V.A. // Dyes and Pigments. 2021. V. 195. p. 109675
- Egorov A.E., Kostyukov A.A., Shcherbakov D.A., Kolymagin D.A., Chubich D.A., Matital R.P. et al. // Polymers. 2023. V. 15. № 1. p. 15010071.
- Handique A., Jyoti B., Swapan S., Dolui K. // J. Polym. Sci., Part A: Polym. Chem. 2019. V. 61. № 5. p. 577.
- Li J., Wang L., Dai L., Zhong L., Liu B., Ren J., Xu Y. // J. Mater. Sci. 2018. V. 53, p. 1874.
- Estrina G.A., Gur’eva L. L., Komarov B.A., Bogdanova L.M., Kurochkin S.A., Estrin Y.I. // Polymer Science, Series B. 2018. V. 60. № 1. p. 1.
- Guo B., Wang M., Zhang D., Sun M., Bi Y., Zhao Y. //ACS Appl. Mater. Interfaces. 2023. V. 15. № 20. p. 24827.
- Zhu Y., Xu D., Zhang Y., Zhou Y., Yagci Y., Liu R. // Angew. Chem. Int. Ed. 2021. V. 60. p. 16917.
- Garra P., Dietlin C., Morlet-Savary F., Dumur F., Gigmes D., Fouassier J., Lalevée J. // Progress in Polymer Science. 2019. V. 94. № 1. p. 33.
- Toba Y., Usui Y., Konishi T., Ito O., Uesugi T. //Macromolecules. 1999. V. 32. № 20. P. 6545.
- Chen M., Zhong M., Johnson J. // Chem. Rev., 2016. V. 116 № 17. P. 10167.
- Gong H., Bickham B.P., Woolley A.T., Nordin G.P. // Lab. Chip. 2017. V. 17. P. 2899.
- Wu Q., Wang X., Xiong Y., Yang J., Tang H. //RSC AdV. 2016. V. 6. P. 66098.
- Huang T.–L., Chen Y.–C. // Polymers. V. 13. № 11. P. 13111801.
- Ibrahim-Ouali M., Dumur F. // European Polymer Journal. 2021. V. 158. P. 110688.
- Lin J.–T., Lalevee J., Cheng D.–C. // Polymers. 2021. V. 13. № 14. P. 2325.
- Konoshenko P.E., Mikerin S.L., Korolkov V.P. // Avtometriia. 2022. V. 58. № 6. P. 108 (in Russian)
- Balcerak A., Kabatc-Borcz J., Czech Z., Bartkowiak M. // Polymers. 2023. V. 15. № 5. P. 1148.
- Derevyanko D., Shelkovnikov V., Kovalskii V., Zilberberg I., Aliev S., Orlova N., Ugozhaev V. // ChemistrySelect. 2020. V. 5. Р. 11939.
- Ratajczak H., Orville-Thomas W.J. // Journal of Molecular Structure. 1972. V. 14. I. 2. P. 155.
- Wang D., Kaya K., Garra P., Fouassier J.–P., Graff B., Yagci Y., Lalevée J. // Polym. Chem. 2019. V. 10. P. 4690.
- Gencoglu T., Graff B., Morlet-Savary F., Lalevée J., Avci D. // ChemistrySelect. 2021. V. 6. P. 5743.
- Garra P., Graff B., Morlet-Savary F., Dietlin C., Becht J., Fouassier J., Lalevee J. // Macromolecules. 2018. V. 51. I. 1. P. 57.
- Breitung E.M., Shu C.–F., McMahon R. J. // J. Am. Chem. Soc. 2000. V. 122. № 6. Р. 1159.
- Zaborova E., Chávez P., Bechara R., Lévêque P., Heiser T., Méryc S., Leclerc N. // Chem. Commun. 2013. V. 49. P. 9938.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R. // Gaussian 09. Revision D. 01. Gaussian, Inc., Wallingford CT. 2013. http://www.gaussian.com
- Grimme S., Ehrlich S., Goerigk L. // J. Comp. Chem. 2011. V. 32. P. 1456.
- Derevyanko D.I., Pen E.F., Shelkovnikov V.V. // Optical Journal. 2023. V. 90. № 5. P. 86 – 92.
- Derevyanko D.I., Shelkovnikov V.V., Aliev S.I., Pen E.F. // Optoelectronics. Instrumentation and Data Proc. 2021. V. 57. № 6. Р. 584.
- Babin S.A., Vasiliev E.V., Kovalevsky V.I. // Avtometry. 2003. № 2. Р. 57.
- Obonga W.O., Omeje E.O., Uzor P.F., Ugwu Acid M.O. // Trop. J. Pharm. Res. 2011. V. 10. I. 6. P. 817.
- Benesi H. A., Hildebrand J.H. // J. Am. Chem. Soc. 1949. 71. P. 2703 – 2707.
- Garbutt S., Gerrard D.L. // J. C. S. Perkin II. 1971. P. 782 – 786.
- Chao Y., Lei L., Ting-Wei M.U., Qing-Xiang G. //Anal. Sci. 2000. V. 16. I. 5. P. 537.
- Srivastava K., Srivastava S., Tanweer A.R. // Int. J. Curr. Res. 2014. V. 6. I. 3. P. 5481.
- Zulkarnain I. M, Khan A.A., Miyan L., Ahmad M., Azizc N. // J. Mol. Struct., 2017. V. 1141. P. 687.
- Abbu V., Nampally V., Baindla N., Tigulla P. // J. Solution Chem. 2019. V. 48. P. 61 – 81.
- Gemeiner P. // Chem. Listy. 2011 V. 105. p. 332.
- Studer K., Decker C., Beck E., Schwalm R. // Prog. Org. Coat. Ser. 2003. V. 48. P. 92.
- Vorzobova N., Sokolov P. // Polymers. 2019. V. 11. P. 2020.
- Bruder F.–K., Facke T., Rolle T. // Polymers. 2017. V. 9. № 10. P. 472.
Supplementary files
