Nitration of Phenol with Water Activated by Pulsed Hot Plasma Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nitration of phenol with plasma-activated water (PAW) generated by pulsed radiation of an electric spark discharge has been studied. Long-lived nitrogen-containing active species that accumulate in water during treatment are nitrous acid and the …ONOOH/ONOO− complex, which decomposes into peroxynitrite and peroxynitrous acid. Their concentration in PAW after 10 min of treatment was ~10−3 mol/L. When PAW is mixed with phenol in a 1 : 1 ratio, the identified reaction product is 4-nitrophenol. The yield
of nitration through PAW is equal to the nitration yield by the direct action of hot plasma radiation on a phenol solution.

About the authors

I. M. Piskarev

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

Author for correspondence.
Email: i.m.piskarev@gmail.com
Moscow, 119234 Russia

References

  1. Zhou Renwu, Zhou Rusen, Wang P. et al. // Journal of Physics D: Applied Physics. 2020. V. 53. 303001.
  2. Balan G.G., Rosca I., Ursu E.-L. et al. // Infection and Drug Resistance. 2018. V. 11. P. 727.
  3. Vlad I.E., Martin C., Toth A.R. et al. // Romanian Reports in Physics. 2019. V. 71. Article 602.
  4. Mai-Prochnow A., Zhou Renwu, Zhang T. et al. // Biofilms and Microbiomes. 2021. V. 7. Article 11.
  5. Julak J., Hujacova A., Scholtz V. et al. // Plasma Physics Reports. 2018. V. 44. № 1. P. 125.
  6. Patel S.S., Patel D.B., Patel H.D. // ChemistrySelect. 2021. V. 6. P. 1.
  7. Hoggett G., Moodie R.B., Penton J.R., Schofield K. Nitration and aromatic reactivity. Cambridge University Press. 1971.
  8. Uppi R.M., Lemercier J.-N., Zhang H., Prior W.A. et al. // Archives of Biochemistry and Biophysics. 1998. V. 358. № 1. P. 1.
  9. Bowers G.N., McComb R.B., Christensen R.G., Schaffer R. // Clin. Chem. 1980. V. 26. № 6. P. 724.
  10. Amani K., Maleki F. // J. Iran. Chem. Soc. 2007. V. 4. № 2. P. 238.
  11. Pourali A.R., Goli A. // J. Chem. Sci. 2011. V. 123. № 1. P. 63.
  12. Patil M.R., Mohite P.H., Shisodia S., Keri S. // Letters in Organic Chemistry. 2015. V. 12. № 2. P. 129.
  13. Иванова И.П., Пискарев И.М. // Химия Высоких Энергий. 2022. Т. 56. № 5. С. 361. High Energy Chemistry. 2022. V. 56. № 5. P. 339.
  14. Пискарев И.М. // Химия Высоких Энергий. 2016. Т. 50. № 5. С. 449. High Energy Chemistry. 2016. V. 50. № 5. P. 71.
  15. Piskarev I.M., Ivanova I.P. // Plasma Chemistry and Plasma Processing. 2021. V. 41. № 1. P. 447.
  16. Piskarev I.M., Ivanova I.P. // Plasma Sources Sci. Technol. 2019. V. 28. 085008 P. 10.
  17. Пискарев И.М., Астафьева К.А., Иванова И.П. // Современные технологии в медицине. 2018. Т. 10. № 2. С. 90.
  18. Лобачев В.П., Рудаков Е.С. // Успехи химии. 2006. Т. 75. № 5. С. 422.
  19. Пискарев И.М. // Химия Высоких Энергий. 2018. Т. 52. № 4. С. 331. High Energy Chemistry. 2018. V. 52. № 4. P. 348.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (173KB)
3.

Download (38KB)
4.

Download (35KB)

Copyright (c) 2023 И.М. Пискарев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies