Configuration of Magnetic Fields in a Quiet Photosphere as Revealed by Comparing the Values of the Longitudinal Field Measured by the COG Method for Two Lines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The estimate of the longitudinal magnetic field obtained from the Hinode spectropolarimeter data will be different if it is determined in different ways. In particular, the values obtained by the Centers Of Gravity (COG) method for the Fe I λ 6301 and 6302 Å lines do not coincide. Some of the differences are due to the different inaccuracies of the COG method for each of the two lines. However, some of the differences can be explained by the fact that the response functions of these lines to changes in the magnetic field are formed at different heights. This should be accompanied by a certain morphological picture of magnetic fields. It consists in the fact that most of the magnetic configurations of the quiet photosphere are similar to each other. To a rough approximation, their structure can be compared with the structure of a sunspot — there is a central region with the strongest field, close to vertical, and slopes — an analog of penumbra, where the field weakens and / or turns to horizontal. This turn occurs at the heights of the greatest response of the Fe I λ 6301 and 6302 Å lines to changes in the magnetic field with a reversal length of about tens of kilometers.

About the authors

S. G. Mozharovsky

Institute of Applied Astronomy RAS

Email: mozharovskys@mail.ru
Saint Petersburg, Russia

References

  1. Гадун А.С., Шеминова В.А. SPANSAT: Программа расчета профилей спектральных линий поглощения в звездных атмосферах в ЛТР приближении // Препринт ИТФ1988, Институт теоретической физики АН Украинской ССР: Киев. Р. 37.
  2. Можаровский С.Г. Развитие программного комплекса SunWorld. Обзор свойств и методов SunWorld от версии 1990 г. до современной // Солнечная активность и ее влияние на Землю. Ежегодник УАФО ДВО РАН. V. 15. Р. 76-110. 2013.
  3. Amar T., Canou A., Vell M. et al. The Ubiquity of Twisted Flux Ropes in the Quiet Sun // 2024. https://doi.org/10.48550/arXiv.2411.10563.
  4. Bellot Rubio L., Orozco Suárez D. Quiet Sun magnetic fields: an observational view // Living Reviews in Solar Physics. V. 16. P. 1. 2019.
  5. Botygina O., Gordovskyy M., Lozitsky V. Investigation of Spatially Unresolved Magnetic Field Outside Sunspots Using Hinode/SOT Observations // Astroinformatics. M. Brescia. V. 325. P. 59–62. 2017.
  6. Domínguez Cerdena I., Sánchez Almeida J., Kneer F. Inter-network magnetic fields observed with sub-arcsec resolution // Astronomy and Astrophysics. V. 407. P. 741–757. 2003.
  7. Gingerich O., Noyes R.W., Kalkofen W., Cuny Y. The Harvard-Smithsonian reference atmosphere // Solar Physics. V. 18(3) P. 347–365. 1971.
  8. Holweger H., Müller E.A. The photospheric barium spectrum: solar abundance and collision broadening of Ba II lines by hydrogen // Solar Physics. V. 39. P. 19–30. 1974.
  9. Kosugi T., Matsuzaki K., Sakao T. et al. The Hinode (Solar-B) Mission: An Overview // Solar Physics. V. 243(1). P. 3–17. 2007.
  10. Landi Degl’Innocenti E. MALIP — a programme to calculate the Stokes parameter of magnetoactive Fraunhofer lines // Astronomy and Astrophysics Supplement Series. V. 25. P. 379–390. 1976.
  11. Lites B.W., Akin D.L., Card G. et al. The Hinode Spectro-Polarimeter // Solar Physics. V. 283. P. 579–599. 2013.
  12. Lites B.W., Kubo M., Socas-Nawarro H., et al. The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter // The Astrophysical Journal. V. 672. P. 1237–1253. 2008.
  13. Lites B.W. et al. Are Internetwork Magnetic Fields in the Solar Photosphere Horizontal or Vertical? // The Astrophysical Journal. V. 835. No. 14. 2017.
  14. Mathys G. The diagnosis of stellar magnetic fields from spectral line profiles recorded in circularly polarized light // Astronomy and Astrophysics. V. 189. P. 179–193. 1988.
  15. Rees D.E. and Semel M.D. Line formation in an unresolved magnetic element — A test of the centre of gravity method // Astronomy and Astrophysics. V. 74. P. 1–5. 1979.
  16. Seme M. Contribution à létude des champs magnétiques dans les régions actives solaires // Annales d’Astrophysique. V. 30. P. 513–513. 1967.
  17. Stenflo J.O. Magnetic-Field Structure of the Photospheric Network // Solar Physics. V. 32. P. 41–63. 1973.
  18. Stenflo J.O. Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations // Astronomy and Astrophysics. V. 555. P. 132. 2013.
  19. Tsuneta S., Ichimoto, K., Katsukawa Y. et al. The Solar Optical Telescope for the Hinode Mission: An Overview // Solar Physics. V. 249. P. 167–196. 2008.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).