Climate Change Over the Last 540 Million Years and Projections of Future Climate Change

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the results of paleoclimatic studies, the modern stage in the Earth's climate history covers the shortest Quaternary geological period lasting about 3 million years. The question arises about future climate changes after the currently observed warming. There is still no consensus among scientists regarding the explanation of the processes that currently occur in the Earth's climate. The article analyzes climate changes since the spread of complex life forms, i.e. the developed plant and animal life, which started on our planet about 542 million years ago (Phanerozoic eon). Reconstructions of the Phanerozoic temperature based on geological and isotopic data of sedimentology and paleoecology are considered. A comprehensive and quantitative assessment of how global temperatures have changed over the past 540 million years is given. Long-term trends in the climate characteristics over hundreds and tens of millions and thousands of years are considered to understand the climate change after the end of the modern Holocene interglacial period. Some possible approaches to the problem of climate change are discussed to demonstrate the need for an interdisciplinary view.

About the authors

V. A. Dergachev

Ioffe Institute, Russian Academy of Sciences

Email: v.dergachev@mail.ioffe.ru
St. Petersburg, Russia

References

  1. Dergachev V.A. Climate fluctuations in the Antarctic region on a long time scale and current climate change // Geomagnetism and Aeronomy. V. 63. No. 8. P. 178–185. 2023.
  2. Dergachev V.A. Climate change over the last 540 million years and projections of future climate change (In Russian). Proceedings “Solar and Solar-Terrestrial Physics-2024”, St. Petersburg, Pulkovo, 7–11 October 2024. P. 97–102. 2024. https://doi.org/10.31725/0552-5829-2024-97-102.
  3. Foster G.L., Royer D.L., D. Lunt J. Future climate forcing potentially without precedent in the last 420 million years // Nat. Commun. V. 8. P. 14845. 2017. https://doi.org/10.1038/ncomms14845; PMID: 28375201.
  4. Frakes L.A., Francis J.E., Syktus J.I., et al. Climate modes of the Phanerozoic. Cambridge: Cambridge University Press, 286p. 1992. http://dx.doi.org/10.1017/CBO9780511628948.
  5. Frakes L.A. Climates throughout Geologic Time. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1979. 310 p. ISBN 0 444 41729 X.
  6. Futuyma D.J. Evolution (Biology). Published by Sinauer Associates Inc., 2005. 603 p. ISBN 10: 0878931872 /ISBN 13.
  7. Horita J., Zimmermann H., Holland H.D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates: Geochimica et al. // Cosmochimica Acta. V. 66. P. 3733–3756. 2002.
  8. Jouzel J., Masson-Delmotte V., Cattani O., Dreyfus G.B. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years // Science. V. 317. P. 793–795. 2007. https://doi.org/10.1126/science.114103.
  9. IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Geneva, Switzerland. P. 1–34. 2023. https://doi.org/10.59327/IPCC/ARG-9789291691647.001.
  10. Judd E.J., Tierney J.E., Lunt D.J., et al. A 485-million-year history of Earth's surface temperature // Science. V. 385(6715) eadk3705. 2024. http://dx.doi.org/10.1126/science.aak3705.
  11. Mokhov I.I. Climate change: causes, risks, consequences, problems of adaptation and regulation (In Russian) // Bulletin of the Russian Academy of Sciences. V. 92. No. 1. P. 3–14. 2022.
  12. Nunes L.J.R., Ferreira Dias M. Perception of climate change effects over time and the contribution of different areas of knowledge to its understanding and mitigation // Climate. V. 10. No. 1. P. 1–19. 2022. https://doi.org/10.3390/cli10010007.
  13. Royer D.L. CO2-forced climate thresholds during the Phanerozoic // Geochimica et Cosmochimica Acta. V. 70. Issue 23. P. 5665–5675. 2006. ttps://doi.org/10.1016/j.gca.2005.11.031.
  14. Royer D.L., Berner R.A., Montanez I.P., Tabor N.J., Beerling D.J. CO2 as a primary driver of Phanerozoic climate // GSA Today. V. 14. No. 3. P. 3–7. 2004. https://doi.org/10.1130/1052-173(2004)014<0004:CAAPDO>2.0.CO:2.
  15. Schmidt G. Climate models can't explain 2023's huge heat anomaly — we could be in uncharted territory // Nature. V. 627(8004). P. 467–467. 2024. https://doi.org/10.1038/d41586-024-00816-z.
  16. Scotese C.R., Song H., Mills B.J.W., van der Meer D.G. Phanerozoic Paleotem-peratures: The Earth's Changing Climate during the Last 540 million years // Earth-Science Reviews V. 215. P. 103503. 2021. https://doi.org/10.1016/j.carscirev.032021.1035.
  17. Scotese C.R., Wright N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, 2018, https://www.earthbyte.org/paleodem-resourcescotes-and-wright-2018.
  18. Shaviv N.J., Svensmark H., Veizer J. The Phanerozoic climate // Annals of the New York Academy of Sciences. V. 1519. Issue 1. P. 1–211. 2023. https://doi.org/10.1111/nyas.14920.
  19. Shaviv N.J. On Climate Response to Changes in the Cosmic Ray Flux and Radiative Budget // Journal of Geophysical Research. V. 110. A08105. P. 1–15. 2005. https://doi.org/10.1029/2004JA010866.
  20. Shaviv N.J. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth, New Astron. V. 8. P. 39–7. dhttps://doi.org/10.1016/S1384-1076(02)00193-8. 2003.
  21. Shaviv N.J., Veizer J. Celestial driver of Phanerozoic climate? // GSA TODAY. V. 13. No. 7. P. 4–10. https://doi.org/1130/1052-5173(2003)013<0004:CDOPC>2.0.CO; 2
  22. Shaviv N.J. Cosmic Ray Diffusion from the Galactic Spiral Arms, Iron Meteorites, and a Possible Climatic Connection // Phys. Rev. Lett. V. 89. No. 5. P. 051102. 2002.
  23. Veizer J., Godderis Y., François L.M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic con // Nature. V. 408. No. 6813. P. 698–701. 2000.
  24. measured in fossils, reported by Veizer et al. (1999)
  25. Veizer J., Hoeffs J. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks // Geochimica et Cosmochimica Acta, V. 40, P. 1387–1395. 1976,
  26. Westerhold T., Marwan N., Joy Drury A.J. et al. An astronomically dated record of Earth's climate and its predictability over the last 60 million years // Science. V. 369(6509). 2020. https://doi.org/10.1126/science.aba6853.
  27. Zachos J., Dickens G., Zeebe R. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics // Nature. V. 451. P. 279–283. 2008. https://doi.org/10.1038/nature06588.
  28. Zachos J., Pagani M., Sloan L. et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present // Science. V. 292. P. 686–692. 2001. https://doi.org/10.1126/science.1059412.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).