Phenomenological Models of the 11-Year Solar Periodicity and Its Empirical Rules
- Authors: Ivanov V.G1
-
Affiliations:
- The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo
- Issue: Vol 65, No 7 (2025)
- Pages: 1014–1023
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/376070
- DOI: https://doi.org/10.7868/S3034502225070053
- ID: 376070
Cite item
Abstract
In this paper, we describe and analyze a method for constructing phenomenological models of the 11-year solar cycle based on a nonlinear oscillator equation with damping and external noise. It is demonstrated that such models can reproduce the known empirical relationships between the parameters of the cycles: the Waldmeier and Chernosky rules. The Gnevyshev-Ohl rule (understood in its original meaning as “correlation”) proved to be the most difficult to reproduce in a model. In this paper, we discuss possible ways to overcome this difficulty. In edition, the constructed models can reproduce another feature seen in observational data — long periods of reduced global activity or “grand minima”.
Keywords
About the authors
V. G Ivanov
The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo
Email: vg.ivanov@gaoran.ru
St. Petersburg, Russia
References
- Гневышев М.Н., Оль А.Н. О 22-летнем цикле солнечной активности // Астроном. жур. Т. 25. № 1. С. 18–20. 1948.
- Козик С.М. Общий вид одиннадцатилетнего цикла пятнообразовательной деятельности Солнца // Астроном. журн. Т. 26. № 1. С. 28–37. 1949.
- Наговицын Ю.А., Осипова А.А., Иванов В.Г. Правило Гневышева—Оля: современный статус // Астроном. журн. Т. 101. № 1. С. 56–64. 2024.
- Anderson C.N. A representation of the sunspot-cycle, Terrestrial Magnetism and Atmospheric Electricity // V. 44. No. 2. P. 175–179. 1939.
- Aguirre L.A., Letellier C., and Maque J. Forecasting the time series of sunspot numbers // Solar Phys. V. 249. P. 103–120. 2008.
- Bracewell R.N. The Sunspot Number Series // Nature. V. 171. P. 649–650. 1953.
- Charbonneau P., Beaulieu G., St-Jean C. Fluctuations in Babcock-Leighton Dynamics. II. Revisiting the Gnewshev-Ohl Rule, Astrophysic. J. // V. 658. No. 1. P. 657–662. 2007.
- Chernosky E.J. A relationship between the length and activity of sunspot cycles, Publ. Astron. Soc. Pac. // V. 392. P. 241–247. 1954.
- Clette F., Svalgaard L., Vaquero J.M., Cliver E.W. Revisiting the sunspot number: A 400-year perspective on the solar cycle // Space. Sci. Rev. V. 186. P. 35–103. 2014. https://www.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt
- Durney B.R. On the difference between odd and even solar cycles, Solar Phys. // V. 196. P. 421–426. 2000.
- Eddy E.A. The Maunder Minimum // Science. V. 192. No. 4245. P. 1189–1202. 1976.
- Gregg D.P. A nonlinear solar cycle model with potential for forecasting on a decadal time scale // Solar Phys. V. 90. P. 185–194. 1984.
- Hale G.E. Preliminary Results of an Attempt to Detect the General Magnetic Field of the Sun // Astrophys. J. V. 38. P. 27–98. 1913.
- Hathaway D.H., Wilson R.M., Reichmann E.J. The shape of the sunspot cycle // Solar Phys. V. 151. P. 177–190. 1994.
- Hathaway D.H. The solar cycle, Living Rev. // Solar Phys. V. 12. Article id. 4. 2015.
- Ivanov V.G, Two Links between Parameters of 11-year Cycle of Solar Activity // Geomagn. Aeron. V. 61. No. 7. P. 1029–1034. 2021.
- Ivanov V.G. The Link between Lengths and Amplitudes of the Eleven-Year Cycle for the Millennium Sunspot Index Series // Geomagn. Aeron. V. 64. No. 7. P. 1069–1072. 2024.
- Karak B.B. Models for the long-term variations of solar activity // Living Rev. Solar Phys. V. 20. Article id. 3. 2023.
- Kiselev B.V., Kozlovskii A.E. The role of external forces in an auto-generation model of solar activity // Geomagn. Aeron. V. 33. No. 3. P. 14–19. 1993.
- Kiselev B.V., Volobuev D.M, Equation of motion from a geophysical data series // In: 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No. 97TH8329). V. 2. P. 246–251. 1997.
- Kyvodubsky V.N. Amplification of the Steady Toroidal Magnetic Field in Solar Interior and Asymmetry of Sunspot Activity in Neighbouring Cycles // In: Solar and Stellar Activity Cycles, 26th meeting of the IAU, Joint Discussion 8, 17–18 August 2006, Prague, Czech Republic, JD08, id. 19.
- Nagovitsyn Yu.A. A Nonlinear Mathematical Model for the Solar Cyclicity and Prospects for Reconstructing the Solar Activity in the Past // Astron. Lett. V. 23. No. 6. P. 742–748. 1997.
- Nagovitsyn Yu.A., Pevtsov A.A. Duffing Oscillator Model of Solar Cycles // Astrophys. J. Lett. V. 888. No. 2. Article id. L26. 2020.
- Noble P.L., Wheatland M.S. Modeling the sunspot number distribution with a Fokker–Planck equation // Astrophysic. J. V. 732. No. 1. Article id. 5. 2011.
- Solanki S.K., Krivova N.A., Schüssler M., Fligge M. Search for a relationship between solar cycle amplitude and length // Astron. Astrophys. V. 396. P. 1029–1035. 2002.
- Spiege, E.A. Chaos and intermittency in the solar cycle // Space Sci. Rev. V. 144. P. 25–51. 2009.
- Usoskin I.G. A History of Solar Activity over Millennia // Living Rev. Solar Phys. V. 10. Article id. 1. 2013.
- Usoskin I.G., Solanki S.K., Krivova N.A., Hofer B., Kovaltsov G.A., Wacker L., Brehm N., Kromer B. Solar cyclic activity over the last millennium reconstructed from annual “C data” // Astron. Astrophys. V. 649. Article id. A141. 2021.
- Volobuev D. “TOY” dynamo to describe the long-term solar activity cycles // Solar Phys. V. 238. P. 421–430. 2006.
- Waldmeier M. Neue Eigenschaften der Sonnenfleckenkurve // Astron. Mitt. Eidgenössischen Sternwarte Zürich. V. 14. P. 105–136. 1935.
Supplementary files


