Changes in the Solar Modulation Parameter in the Holocene and the Tilt of the Geomagnetic Dipole

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Knowledge of the past solar activity is important for predicting the future solar activity. One of the key quantities characterizing the solar activity is the solar modulation parameter (SMP). It parameterizes solar activity by the use of equation that describes the propagation of cosmic rays in the solar system. SMP for the last few decades is determined using neutron monitors. Cosmogenic isotopes are commonly used to obtain information on SMP beyond the instrumental period. We used data on the 10Be production rate for the last 9.5 thousand years. According to Kovaltsov and Usoskin [2010], there is an unambiguous relationship between the 10Be production rate, the geomagnetic field strength, and SMP. We used this relationship to determine the solar modulation parameter for the Holocene. It is shown that the time dependence of SMP is non-stationary. For further analysis, the empirical mode decomposition method was applied [Huang et al., 2003]. Analysis of the modes obtained showed that among the younger modes, there are cycles with periods of 710 and 208 years. The latter mode is a manifestation of the De Vries cycle known in the analysis of cosmogenic isotopes. The existence of a cycle with a period of 710 years cannot be explained within the framework of standard concepts of cosmogenic isotopes. We associate the existence of the 710-year cycle with fluctuations in the tilt of the Earth’s magnetic dipole. It is shown that, taking into account the influence of the dipole tilt fluctuations on the formation rate of cosmogenic isotopes, the De Vries cycle in the Holocene was the dominant low-frequency cycle with a period of about a hundred years. The wavelet analysis showed that its amplitude remained virtually unchanged for 9.5 thousand years. The aim of the work is to study the cyclicity of solar activity taking into account the existence of fluctuations in the tilt of the Earth’s magnetic dipole.

About the authors

S. S Vasiliev

A.F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: sergey.vasiliev@mail.ioffe.ru
Saint Petersburg, Russia

V. A Dergachev

A.F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Saint Petersburg, Russia

References

  1. Amit H., Olson P. Geomagnetic dipole tilt changes induced by core flow // Phys. Earth Planet. Inter. 2008. V. 166 (3–4). P. 226–238. http://dx.doi.org/10.1016/j.pepi.2008.01.007
  2. Constable C., Korte M., Panovska S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years // Earth Planet. Sci. Lett. 2016. V. 453 (2). P. 78. http://dx.doi.org/10.1016/j.epsl.2016.08.015
  3. Finkel R.C., Nishizumi K. Beryllium 10 concentrations in the Greenland ice sheet project 2 ice core from 3–40 ka // J. Geophys. Res. 1997. V. 102(C12). P. 26699–26706. http://dx.doi.org/10.1029/97JC01282
  4. Gleeson L.J., Axford W.I. Solar modulation of galactic cosmic rays // Astrophys. J. 1968. V. 154. P. 1011–1018. http://dx.doi.org/10.1086/149822
  5. Grootes P.M., van der Pilcht H. Hessel De Vries: Radiocarbon pioneer from Groningen // Radiocarbon. 2022. V. 64 (3). P. 419–433. http://dx.doi.org/10.1017/RDC.2021.63
  6. Herbst K., Kopp A., Heber B., et al. On the importance of the local interstellar spectrum for the solar modulation parameter // J. Geophys. Res. 2010. V. 115(D1). P. 2009JD012557. https://doi.org/10.1029/2009JD012557
  7. Huang N.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A. 1998 V. 454. P. 903–995. http://dx.doi.org/10.1098/rspa.1998.0193
  8. Huang N.E., Wu Man-Li, Long S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A. 2003. V. 459. P. 2317. http://dx.doi.org/10.1098/rspa.2003.1123
  9. Johnsen S.J., Dansgaard W., White W.C. The origin of Arctic precipitation under present and glacial conditions // Tellus. Ser. B. 1989. V. 41. P. 452–468. https://doi.org/10.3402/tellusb.v41i4.15100
  10. Korte M., Mandea M. Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space 2008. V. 60 (9). P. 937–948. https://doi.org/10.1186/BF03352849.
  11. Kovaltsov G.A., Usoski I.G. A new 3D numerical model of cosmogenic nuclide 10 Be production in the atmosphere // Earth Planet. Sci. Lett. 2010. V. 291(1–4). P. 182–188. http://dx.doi.org/10.1016/j.epsl.2010.01.011
  12. Knudsen M.F., Riisager P., Donadini F., et al. // Earth Planet. Sci. Lett. 2008. V. 272. P. 319. http://dx.doi.org/10.1016/j.epsl.2008.04.048
  13. Kudryavtsev I.V., Dergachev V.A., Nagovitsyn V.A. Reconstructions of the heliospheric modulation potential and earth climate variations over the past 20 000 years // Geomagn. Aeron. 2022. V. 62. P. 851. http://dx.doi.org/10.1134/S0016793222070155
  14. Masarik J., Beer J.J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere // J. Geophys. Res.: Atmospheres. 1999. V. 104 (D10). P. 12099. http://dx.doi.org/10.1029/1998JD200091
  15. Mayewski P.A., Meeker L.D., Twickler M.S., et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110000 year-long glaciochemical series // J. Geophys. Res. 1997. V. 102 (C12). P. 26345–26366. https://doi.org/10.1029/96JC03365
  16. McElhinny M.W., Senanayake W.E. Variations in the geomagnetic dipole 1: The past 50000 years // J. Geomag. Geoelectr. 1982. V. 34. P. 39. http://dx.doi.org/10.5636/jgg.34.39
  17. Muscheler R., Adolphi F., Knudsen M.F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations // Quat Sci Rev. 2014. V. 106. P. 81. http://dx.doi.org/10.1016/j.quascirev.2014.08.017
  18. Nilsson A., Muscheler R., Snowball I. Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction // Earth Planet. Sci. Lett. 2011. V. 311(3–4). P. 299–305. http://dx.doi.org/10.1016/j.epsl.2011.09.030
  19. Parker E.N. The passage of energetic charged particles through interplanetary space // Planet. Space Sci. 1965. V. 13 (1). P. 9–49. http://dx.doi.org/10.1016/0032-0633(65)90131-5
  20. Tauxe L. Essentials of Paleomagnetism: Fifth Web Edition. 2021. Available From: https://earthref.org/MagIC/books/Tauxe/Essentials/
  21. Yang S., Odah H., Shaw J. Variations in the geomagnetic dipole moment over the last 12000 years. Geophys. J. Int. 2000. V. 140 (1). P. 158. http://dx.doi.org/10.1046/j.1365-246x.2000.00011.x
  22. WDC-SILSO. Sunspot Number Data. Available from: http://www.wdcb.ru/stp/solar/sunspots.html

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).