The Study of Possible Precursors of Solar Flares in the Active Region Noaa 12230 on December 9, 2014

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nature of precursors of solar flares and their relationship with subsequent flares are still not clear. This is due, in particular, to the lack of systematic statistical work, the relatively incomplete studies of individual events (out of the context of evolution of the entire active region), and the ambiguity of the term “precursor” itself. In this paper, we consider the dynamics of the NOAA 12230 active region (AR), in which a series of homologous flares (C5-C9) occurred on December 9, 2014 within 12 hours with a mean occurrence rate of about 2 hours. This AR is characterized by rapidly increasing flare activity followed by a rapid decay, which can serve as a good example for studying potential precursors of a series of flares. We investigated the evolution of AR NOAA 12230 over a relatively long time interval (several days) and its transition from the ‘no-flare’ state to the flare-active regime. For this purpose, we studied the magnetic field dynamics using SDO/HMI vector magnetograms, UV-EUV images based on SDO/AIA data, and GOES/XRS and RHESSI X-ray data. Thus, we identified several phases in the AR evolution in terms of the magnetic-field dynamics and flare activity. A method for building hourly integral maps of UV variations based on AIA 1600 A data was proposed. It was concluded that significantly increased variations in the chromospheric radiation against small soft X-ray and UV emission fluxes from the corona observed on December 8, 2014, together with the emergence of a magnetic flux, can be considered as a precursor to a series of flares. We also analyzed the appearance of X-ray sources of weak bursts before the series of flares. X-ray bursts developed in the same plasma structures where future flares occurred. The results obtained show the importance and prospects of using new methods of synoptic observations of the Sun for collecting statistics (“history”) of the energy release in AR in different ranges of the electromagnetic spectrum. In other words, it is important to monitor not only the dynamics of the magnetic field structure but also how the AR releases the stored magnetic energy. An integrated approach will allow the development of new methods for predicting flares, perhaps, more advanced than simply taking into account the magnetic field structure.

About the authors

G. G Motorina

Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences; Space Research Institute of the Russian Academy of Sciences

Email: g.motorina@yandex.ru
St. Petersburg, Russia; Moscow, Russia

I. N Sharykin

Space Research Institute of the Russian Academy of Sciences

Moscow, Russia

I. V Zimovets

Space Research Institute of the Russian Academy of Sciences

Moscow, Russia

A. S Motorin

ITMO University

St. Petersburg, Russia

References

  1. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 286 с. 1979.
  2. Abramov-Maximov V.E., Borovik V.N., Opeikina L.V., et al. Precursors of the solar X flare on march 29, 2014, in the active region NOAA 12017 based on microwave radiation and magnetographic data // Sol. Phys. V. 290. P. 53. 2015.
  3. Abramov-Maximov V.E., Bakunina I.A. Signs of preparation of solar flares in the microwave range // Ge&Ac. V. 62. No. 7. P. 895–902. 2022.
  4. Awasthi A.K., Jain R., Gadhiya P.D., et al. Multiwavelength diagnostics of the precursor and main phases of an M1.8 flare on 2011 April 22 // MNRAS. V. 437. I. 3. 2249. 2014.
  5. Awasthi A.K., Liu R., Wang H., et al. Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona // Astrophys. J. V. 857. I. 2. 124. 2018a.
  6. Awasthi A.K., Rudawy P., Falewicz R., et al. Chromospheric response during the precursor and the main phase of a B6.4 flare on 2005 August 20 // Astrophys. J. V. 858. I. 2. 98. 2018b.
  7. Bakunina I.A., Melnikov V.F., Morgachev A.S. Preflare dynamics of microwave and ultraviolet emission in active regions of the Sun // Astrophysics. V. 63. I. 2. 252. 2020a.
  8. Bakunina I.A., Melnikov V.F., Morgachev A.S. Signs of preflare situation in solar ultraviolet and microwave emission // Ge&Ac. V. 60. I. 7. 853. 2020b.
  9. Bakunina I.A., Melnikov V.F., Solov'ev A.A., et al. Intersunspot microwave sources // Sol. Phys. V. 290. I. 1. 37. 2015.
  10. Cheng X., Ding M.D., Zhang J., et al. On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence // Astrophys. J. V. 789. I. 2. L35. 2014.
  11. Chifor C., Mason H.E., Tripathi D., et al. The early phases of a solar prominence eruption and associated flare: a multi-wavelength analysis // Astron. and Astrophys. V. 458. I. 3. 965. 2006.
  12. Chifor C., Tripathi D., Mason H.E., et al. X-ray precursors to flares and filament eruptions // Astron. and Astrophys. V. 472. I. 3. 967. 2007.
  13. Dudik J., Polito V., Janvier M., et al. Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare // Astrophys. J. V. 823. I. 1. 41. 2016.
  14. Fursyak Yu.A., Abramenko V.I., Kutsenko A.S. Dynamics of electric current's parameters in active regions on the Sun and their relation to the flare index // Astrophysics. V. 63. I. 2. 2020.
  15. Gibson S.E., Fletcher L., Del Zanna G., et al. The structure and evolution of a sigmoidal active region // Astrophys. J. V. 574. I. 2. 1021. 2002.
  16. Hannah I.G., Kontar E.P. Differential emission measures from the regularized inversion of Hinode and SDO data // A&A. V. 539. Id. A146. P. 14. 2012.
  17. Hernandez-Perez A., Su Y., Thalmann J., et al. A hot cusp-shaped confined solar flare // Astrophys. J. V. 887. I. 2. L28. 2019.
  18. Huang N., Xu Y., Sadykov V.M., et al. Spectral Diagnosis of Mg II and Hα lines during the Initial Stage of an M6.5 Solar Flare // Astrophys. J. V. 878. I. 1. L15. 2019.
  19. Hurford G.J., Schmahl E.J., Schwartz R.A., et al. The RHESSI imaging concept // Sol. Phys. V. 210. I. 61. 2002.
  20. Jeffrey N.L.S., Fletcher L., Labrosse N., et al. The development of lower-atmosphere turbulence early in a solar flare // Science Advances. V. 4. I. 12. 2794. 2018.
  21. Jiang C., Wu S.T., Feng X., et al. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling // Astrophys. J. V. 780. 55. 2014.
  22. Kai K., Nakajima H., and Kosugi T. Radio observations of small activity prior to main energy release in solar flares // Publ. Astron. Soc. Japan. V. 35. I. 2. 285. 1983.
  23. Lemen J.R., Title A.M., Akin D.J. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Sol. Phys. V. 275. I. 1–2. P. 17–40. 2012.
  24. Lin R.P., Dennis B.R., Hurford G.J., et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) // Sol. Phys. V. 210. I. 1. P. 3–32. 2002.
  25. Mitra P.K. and Joshi B. Preflare processes, flux rope activation, large-scale eruption, and associated X-class flare from the active region NOAA 11875 // Astrophys. J. V. 884. 46. 2019.
  26. Motorina G.G., Tsap Yu.T., Smirnova V.V., et al. Preimpulsive and impulsive phases of the sub-terahertz flare of March 28, 2022 // Ge&Ac. V. 63. I. 8. P. 1218–1223. 2023.
  27. Nechaeva A.B., Zimovets I.V., Zubik V.S., et al. Evolution of characteristics of vertical electric current and magnetic field in active regions of the Sun and their relation to powerful flares // Ge&Ac. V. 64. I. 2. P. 150–171. 2024.
  28. Nindos A., Patsourakos S., Vourlidas A., et al. How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations // Astrophys. J. V. 808. 2. 117. 2015.
  29. Ohyama M. and Shibata K. Preflare heating and mass motion in a solar flare associated with hot plasma ejection: 1993 November 11 C9.7 flare // Publ. Astron. Soc. Japan. 49. 249. 1997.
  30. Scherrer P.H., Schou J., Bush R.I., et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) // Sol. Phys. V. 275. I. 1–2. 207. 2012.
  31. Sharykin I.N., Zimovets I.V., and Myshyakov I.I. Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. II. Investigation of photospheric electric current and magnetic field variations using HMI 135 s vector magnetograms // Astrophys. J. V. 893. I. 2. 159. 2020.
  32. Shohin T.D., Charikov Yu.E., Shabalin A.N. Ultraviolet and X-ray precursors of solar flares // Ge&Ac. V. 64. I. 8. P. 1386–1394. 2024.
  33. Tan B., Yu Z., Huang J., et al. Very long-period pulsations before the onset of solar flares // Astrophys. J. V. 833. I. 2. 206. 2016.
  34. Toriumi S., Wang H. Flare-productive active regions // Living Rev. Sol. Phys. V. 16. 3. 2019.
  35. Tsap Yu.T., Motorina G.G. Flare plasma diagnostics from X-Ray and Ultraviolet observations // Ge&Ac. V. 57. I. 7. 2017.
  36. Uralov A.M., Grechnev V.V., Rudenko G.V., et al. Microwave neutral line associated source and a current sheet // Sol. Phys. V. 249. I. 2. 315. 2008.
  37. Van Driel-Gesztelyi L. and Green L.M. Evolution of active regions // Living Rev. Sol. Phys. V. 12. I. 1. 2015.
  38. Van Hoven G., Hurford G.J. Solar flare precursors // ASR. V. 6. I. 6. 1986.
  39. Wallace A.J., Harra L.K., Van Driel-Gesztelyi L., et al. Pre-flare flows in the corona // Sol. Phys. V. 267. I. 2. 2010.
  40. Wang H., Liu C., Ahn K., et al. High-resolution observations of flare precursors in the low solar atmosphere // Nature Astronomy. V. 1. 0085. 2017.
  41. White S.M., Thomas R.J., Schwartz R.A. Updated expressions for determining temperatures and emission measures from Goes soft X-ray measurements // Sol. Phys. V. 227. I. 2. 231. 2005.
  42. Woods M.M., Harra L.K., Matthews S.A., et al. Observations and modelling of the pre-flare period of the 29 March 2014 X1 flare // Sol. Phys. V. 292. I. 2. 38. 2017.
  43. Wu Z., Chen Y., Huang G., et al. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare // Astrophys. J. V. 820. I. 2. L29. 2016.
  44. Zhang J., Cheng X., and Ding M.-D. Observation of an evolving magnetic flux rope before and during a solar eruption // Nature Communications. V. 3. Id. 747. 2012.
  45. Zhang Y., Tan B., Karlicky M., et al. Solar radio bursts with spectral fine structures in preflares // Astrophys. J. V. 799. I. 1. Id. 30. 2015.
  46. Zhdanov A.A., Charikov Y.E. Power spectrum analysis of preflare solar X-rays // Soviet Astronomy Letters. V. 11. 88. 1985.
  47. Zhou G.P., Zhang J., and Wang J.X. Observations of magnetic flux-rope oscillation during the precursor phase of a solar eruption // Astrophys. J. L. V. 823. I. 1. L19. 2016.
  48. Zimovets I.V., Nechaeva A.B., Sharykin I.N., et al. Sources of long-period X-ray pulsations before the onset of solar flares // Ge&Ac. V. 62. I. 4. 356. 2022.
  49. Zimovets I.V., Sharykin I.N., Kaltman T.I., et al. Preflare X-ray pulsations with sources outside the main flare active region // Ge&Ac. V. 63. I. 5. 513. 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).