Evolution of the Total Magnetic and Kinetic Energy in the Convective Zone of a Star
- Authors: Kislov R.A.1, Starchenko S.V.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
- Issue: Vol 65, No 8 (2025)
- Pages: 1142–1150
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/376047
- DOI: https://doi.org/10.7868/S3034502225080022
- ID: 376047
Cite item
Abstract
Qualitative estimates of the dynamics of the stellar convective zone as a whole are useful either when observation - data on a star are scares or as a preliminary step before constructing a more complex model that requires complicated computations. In this work, we present a qualitative model that describes the evolution of the mean square values of the velocity and magnetic field in the convective zone of a Sun-like star. The stability of possible equilibrium values of the mean squares of velocity and magnetic field is investigated. Solutions of the model equations are obtained for different values of buoyancy and the ratio of the convection and magnetic field timescales. It is shown that the following scenarios are possible: 1) the magnetic field increases starting from an arbitrary small initial value; 2) the magnetic field vanishes being initially finite; 3) the velocity and magnetic-field behavior in the vicinity of the stationary values and far from them can differ significantly. The amplification/decay of the mean-square magnetic field does not depend on the initial conditions, but is determined solely by the parameters of the stellar convective zone. The parameters of the Sun’s convective zone correspond to a boundary case between scenarios 1 and 2, and their small changes can lead to different outcomes.
Keywords
About the authors
R. A. Kislov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
Email: kr-rk@bk.ru
Troitsk, Moscow, Russia
S. V. Starchenko
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
Email: sstarchenko@mail.ru
Troitsk, Moscow, Russia
References
- Вандакуров Ю.В. Конвекция на Солнце и 11-летний цикл. Ленинград: Наука, 1976, 156 с.
- Гетлинг А.В. Конвективный механизм формирования фотосферных магнитных полей // Астрономический вестник. Т. 78. № 7. С. 661–668. 2001.
- Гетлинг А.В. Конвективная зона Солнца. Большая Российская Энциклопедия, 2022. https://bigenc.ru/c/konvektivnaia-zona-solntsa-261i37
- Засов А.В., Постнов К.А. Общая астрофизика. Фрязино: Век 2, 2006, 496 с.
- Кислов Р.А., Старченко С.В. Эволюция суммарной магнитной и кинетической энергии в конвективной зоне звезды. Сборник трудов XXVIII всероссийской конференции “Солнечная и солнечно-земная физика”, Россия, Санкт-Петербург, 2024, стр. 161–164. https://doi.org/10.31725/0552-5829-2024-161-164
- Криводубский В.Н. Письма в астрономический журнал. Т. 13. С. 803–810. 1987. (англ. версия: https://ui.adsabs.harvard.edu/abs/1987SvAL...13..338K/abstract)
- Кузнецов В.Д., Сыроватский С.И. Плавучесть магнитных полей и 11-летний цикл солнечной активности // Астрономический журнал. Т. 56. С. 1263–1271. 1979. (англ. версия: https://ui.adsabs.harvard.edu/abs/1979SvA....23..715K/abstract)
- Пикельнер С.Б. Конвекция. Физика космоса. Маленькая энциклопедия. Под ред. Р.А. Сюняева. М.: Советская энциклопедия, 1986. 786 с.
- Романко В.К. Курс дифференциальных уравнений и вариационного исчисления. 2 изд. М.: Лаборатория Базовых Знаний, 2001. 344 с.
- Braginsky S.I., Roberts P.H. Equations governing convection in the Earth’s core and the geodynamo // Geoph. Astroph. Fluid Dyn. V. 79. P. 1–97. 1995.
- Chizaru M., Carbonneau P., Smolarkiewicz P.K. Magnetic cycles in global large-eddy simulations of solar convection // Astrophys. J. Lett. V. 715. P. L133-137. 2010. https://doi.org/10.1088/2041-8205/715/2/L133
- Christensen U., Aubert J., Hulot G. Conditions for Earth-like geodynamo models // Earth Planet. Sci. Lett. V. 296. P. 487–496. 2010.
- Elliott J.R., Smolarkiewicz P.K. Eddy resolving simulations of turbulent solar convection // Int. J. Numer. Meth. Fluids. 2002. V. 39. P. 855–864. https://doi.org/10.1002/fld.333
- Getling A.V., Kosovichev A.G. Spatial scales and time variation of solar subsurface convection // Astrophys. J. 2022. V. 937. No. 41. P. 12. https://doi.org/10.3847/1538-4357/ac8870
- Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Phys. Earth Planet. Int. V. 91. No. 1–3. P. 63–75. 1995.
- Goldreich P., Keeley D.A. Solar seismology. II. The stochastic excitation of the solar p-modes by turbulent convection // Astrophys. J. V. 212. P. 243–252. 1977.
- Guenther D.B., Demarque P., Kim Y.-C., Pinsonneault M.H. Standard solar model // Astrophys. J. V. 387. P. 372–393. 1992. https://doi.org/10.1086/171090
- Maiewski E., Malova H., Popov V., et al. Migrating dynamo waves and consequences for stellar current sheets // Solar Physics. V. 297. No. 150. P. 27. 2022. https://doi.org/10.1007/s11207-022-02085-3
- Shebalin J.V. Magnetohydrodynamic turbulence in a spherical shell: Galerkin models, boundary conditions, and the dynamo problem // Fluids. V. 10. No. 2. P. 24. 2025. https://doi.org/10.3390/fluids10020024
- Spruit H.C. A model of the solar convection zone // Solar Physics. V. 34. No. 2. P. 277–290. 1974. https://doi.org/10.1007/BF00153665
- Starchenko S.V. Analytic scaling laws in planetary dynamo models // Geoph. Astroph. Fluid Dyn. V. 113. No. 1–2. P. 71–79. 2019. https://doi.org/10.1080/03091929.2018.1551531
- Starchenko S.V. Simple Model of the Evolution of Magnetic and Kinetic Energy of the Geodynamo // Geomagnetism and Aeronomy. V. 64. No. 6. P. 890–896. 2024. https://doi.org/10.1134/S0016793224600759
- Unno W., Ribes E. On magnetic buoyancy in the convection zone // Astrophys. J. V. 208. P. 222–223. 1976. https://doi.org/10.1086/154597
Supplementary files


