Evolution of the Total Magnetic and Kinetic Energy in the Convective Zone of a Star

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Qualitative estimates of the dynamics of the stellar convective zone as a whole are useful either when observation - data on a star are scares or as a preliminary step before constructing a more complex model that requires complicated computations. In this work, we present a qualitative model that describes the evolution of the mean square values of the velocity and magnetic field in the convective zone of a Sun-like star. The stability of possible equilibrium values of the mean squares of velocity and magnetic field is investigated. Solutions of the model equations are obtained for different values of buoyancy and the ratio of the convection and magnetic field timescales. It is shown that the following scenarios are possible: 1) the magnetic field increases starting from an arbitrary small initial value; 2) the magnetic field vanishes being initially finite; 3) the velocity and magnetic-field behavior in the vicinity of the stationary values and far from them can differ significantly. The amplification/decay of the mean-square magnetic field does not depend on the initial conditions, but is determined solely by the parameters of the stellar convective zone. The parameters of the Sun’s convective zone correspond to a boundary case between scenarios 1 and 2, and their small changes can lead to different outcomes.

About the authors

R. A. Kislov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Email: kr-rk@bk.ru
Troitsk, Moscow, Russia

S. V. Starchenko

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Email: sstarchenko@mail.ru
Troitsk, Moscow, Russia

References

  1. Вандакуров Ю.В. Конвекция на Солнце и 11-летний цикл. Ленинград: Наука, 1976, 156 с.
  2. Гетлинг А.В. Конвективный механизм формирования фотосферных магнитных полей // Астрономический вестник. Т. 78. № 7. С. 661–668. 2001.
  3. Гетлинг А.В. Конвективная зона Солнца. Большая Российская Энциклопедия, 2022. https://bigenc.ru/c/konvektivnaia-zona-solntsa-261i37
  4. Засов А.В., Постнов К.А. Общая астрофизика. Фрязино: Век 2, 2006, 496 с.
  5. Кислов Р.А., Старченко С.В. Эволюция суммарной магнитной и кинетической энергии в конвективной зоне звезды. Сборник трудов XXVIII всероссийской конференции “Солнечная и солнечно-земная физика”, Россия, Санкт-Петербург, 2024, стр. 161–164. https://doi.org/10.31725/0552-5829-2024-161-164
  6. Криводубский В.Н. Письма в астрономический журнал. Т. 13. С. 803–810. 1987. (англ. версия: https://ui.adsabs.harvard.edu/abs/1987SvAL...13..338K/abstract)
  7. Кузнецов В.Д., Сыроватский С.И. Плавучесть магнитных полей и 11-летний цикл солнечной активности // Астрономический журнал. Т. 56. С. 1263–1271. 1979. (англ. версия: https://ui.adsabs.harvard.edu/abs/1979SvA....23..715K/abstract)
  8. Пикельнер С.Б. Конвекция. Физика космоса. Маленькая энциклопедия. Под ред. Р.А. Сюняева. М.: Советская энциклопедия, 1986. 786 с.
  9. Романко В.К. Курс дифференциальных уравнений и вариационного исчисления. 2 изд. М.: Лаборатория Базовых Знаний, 2001. 344 с.
  10. Braginsky S.I., Roberts P.H. Equations governing convection in the Earth’s core and the geodynamo // Geoph. Astroph. Fluid Dyn. V. 79. P. 1–97. 1995.
  11. Chizaru M., Carbonneau P., Smolarkiewicz P.K. Magnetic cycles in global large-eddy simulations of solar convection // Astrophys. J. Lett. V. 715. P. L133-137. 2010. https://doi.org/10.1088/2041-8205/715/2/L133
  12. Christensen U., Aubert J., Hulot G. Conditions for Earth-like geodynamo models // Earth Planet. Sci. Lett. V. 296. P. 487–496. 2010.
  13. Elliott J.R., Smolarkiewicz P.K. Eddy resolving simulations of turbulent solar convection // Int. J. Numer. Meth. Fluids. 2002. V. 39. P. 855–864. https://doi.org/10.1002/fld.333
  14. Getling A.V., Kosovichev A.G. Spatial scales and time variation of solar subsurface convection // Astrophys. J. 2022. V. 937. No. 41. P. 12. https://doi.org/10.3847/1538-4357/ac8870
  15. Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Phys. Earth Planet. Int. V. 91. No. 1–3. P. 63–75. 1995.
  16. Goldreich P., Keeley D.A. Solar seismology. II. The stochastic excitation of the solar p-modes by turbulent convection // Astrophys. J. V. 212. P. 243–252. 1977.
  17. Guenther D.B., Demarque P., Kim Y.-C., Pinsonneault M.H. Standard solar model // Astrophys. J. V. 387. P. 372–393. 1992. https://doi.org/10.1086/171090
  18. Maiewski E., Malova H., Popov V., et al. Migrating dynamo waves and consequences for stellar current sheets // Solar Physics. V. 297. No. 150. P. 27. 2022. https://doi.org/10.1007/s11207-022-02085-3
  19. Shebalin J.V. Magnetohydrodynamic turbulence in a spherical shell: Galerkin models, boundary conditions, and the dynamo problem // Fluids. V. 10. No. 2. P. 24. 2025. https://doi.org/10.3390/fluids10020024
  20. Spruit H.C. A model of the solar convection zone // Solar Physics. V. 34. No. 2. P. 277–290. 1974. https://doi.org/10.1007/BF00153665
  21. Starchenko S.V. Analytic scaling laws in planetary dynamo models // Geoph. Astroph. Fluid Dyn. V. 113. No. 1–2. P. 71–79. 2019. https://doi.org/10.1080/03091929.2018.1551531
  22. Starchenko S.V. Simple Model of the Evolution of Magnetic and Kinetic Energy of the Geodynamo // Geomagnetism and Aeronomy. V. 64. No. 6. P. 890–896. 2024. https://doi.org/10.1134/S0016793224600759
  23. Unno W., Ribes E. On magnetic buoyancy in the convection zone // Astrophys. J. V. 208. P. 222–223. 1976. https://doi.org/10.1086/154597

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).