Formula of Total Electron Content in the Nequick Model for Low-Orbit Satellites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analytical formula for calculating the vertical total electron content TEC from the base of the ionosphere to a low-orbit satellite is derived using the parameters of the E, F1, and F2 layer maxima in the NeQuick model and the altitude of the navigation satellite in the interval from the F2 layer maximum to approximately 2000 km. It is found that under typical conditions, the error of this formula does not exceed 1.5–2% compared to a more precise solution, i.e. obtaining TEC as an integral of the electron concentration according to the NeQuick model along a vertical ray from the base of the ionosphere to the satellite. The error of the formula does not depend much on the satellite altitude and is greater during the day than at the nighttime.

About the authors

M. G. Deminov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: deminov@izmiran.ru
Moscow, Troitsk, Russia

References

  1. Афраймович Э.А., Перевалова Н.П. GPS-мониторинг верхней атмосферы Земли. Иркутск: ГУ НЦ РВХ ВСНЦ СО РАМН, 480 с. 2006.
  2. Деминов М.Г. Простая формула для полного электронного содержания в модели NeQuick: I. VTEC // Геомагнетизм и аэрономия. Т. 65. № 5. С. 669–676. 2025.
  3. Afraimovich E.L., Astafyeva E.I., Demyanov V.V. et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena // J. Space Weather Spac. V. 3. ID A27. 2013. https://doi.org/10.1051/swsc/2013049
  4. Angrisano A., Gaglione S., Gioia C., Massaro M., Robustelli U. Assessment of NeQuick ionospheric model for Galileo single-frequency users // Acta Geophys. V. 61. № 6. P. 1457–1476. 2013. https://doi.org/10.2478/s11600-013-0116-2
  5. Bilitza D., Pezzopane M., Truhlik V., Aladill D., Reinisch B.W., Pigualberi A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark // Rev. Geophysics. V. 60. № 4. ID e2022RG000792. 2022. https://doi.org/10.1029/2022RG000792
  6. Di Giovanni G., Radicella S.M. An analytical model of the electron density profile in the ionosphere // Adv. Space Res. V. 10. № 11. P. 27–30. 1990. https://doi.org/10.1016/0273-1177(90)90301-F
  7. European Commission. European GNSS (Galileo) open service – ionospheric correction algorithm for Galileo single frequency users. Issue 1.2. 2016. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf
  8. Gulyaeva T., Bilitza D. Towards ISO standard earth ionosphere and plasmasphere model / New Developments in the Standard Model. Ed. Larsen R.J. Ch. 1. London: Nova Science Publishers Inc. P. 1–39. 2012. ISBN 978-1-61209-989-7
  9. Hoque M.M., Jakowski N., Prol F.S. A new climatological electron density model for supporting space weather services // J. Space Weather Spac. V. 12. ID 1. 2022. https://doi.org/10.1051/swsc/2021044
  10. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more. Wien: Springer-Verlag, 516 p. 2008. https://doi.org/10.1007/978-3-211-73017-1
  11. ITU. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation. P. 531–12, Geneva. 2013.
  12. Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods // Telecommun. J. V. 29. № 5. P. 129–149. 1962.
  13. Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods. 2 // Telecommun. J. V. 32. № 1. P. 18–28. 1965.
  14. Nava B., Coisson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model // J. Atmos. Sol.-Terr. Phys. V. 70. № 15. P. 1856–1862. 2008. https://doi.org/10.1016/j.jastp.2008.01.015
  15. Radicella S.M., Zhang M.-L. The improved DGR analytical model of electron density height profile and total electron content in the ionosphere // Ann. Geophys. – Italy. V. 38. № 1. P. 35–41. 1995. https://doi.org/10.4401/ag-4130
  16. Rawer K. Replacement of the present sub-peak plasma density profile by a unique expression // Adv. Space Res. V. 2. № 10. P. 183–190. 1982. https://doi.org/10.1016/0273-1177(82)90387-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).