Dynamics of Relativistic Electron Fluxes of the Outer Radiation Belt During Low Geomagnetic Activity on January 07–24, 2018

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of studying the dynamics of relativistic electron fluxes of the Earth’s outer radiation belt during a long period of low geomagnetic activity on January 07–24, 2018. The arrival of high-speed solar wind streams that caused minor geomagnetic disturbances with an amplitude of about 20 nT was observed during three successive intervals on January 07–13, 14–18, and 19–24. A comparative analysis was carried out to study variations in the parameters of the solar wind and interplanetary magnetic field and the response of the magnetosphere to external influences. The work is based on experimental data on relativistic electron fluxes obtained from the GOES-15 geostationary satellite and the Van Allen Probes A spacecraft, whose orbit passed through the core of the outer radiation belt near the equatorial plane. It is shown that the magnetic field variations associated with external influences on the magnetosphere (pressure pulses) and with the proper dynamics of the latter (substorm activity) control the dynamics of electron fluxes in the outer radiation belt.

About the authors

A. A. Zykina

Lomonosov Moscow State University; Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP)

Email: anya.zykina@gmail.com
Moscow, Russia

C. Zh. Azra-Gorskaya

Lomonosov Moscow State University; Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP)

Moscow, Russia

V. V. Kalegaev

Lomonosov Moscow State University; Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP)

Moscow, Russia

N. A. Vlasova

Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP)

Moscow, Russia

References

  1. Бондарева Т.Б., Тверская Л.В. О дрейфе частиц радиационных поясов во время суббурь // Геомагнетизм и аэрономия. Т. 13. № 4. С. 723—729. 1973.
  2. Вернов С.Н., Кузнецов С.Н., Логачев Ю.И. и др. Радиальная диффузия электронов с энергией больше 100 кэВ во внешнем радиационном поясе // Геомагнетизм и аэрономия. Т. 8. № 3. С. 401—411. 1968.
  3. Власова Н.А., Калегаев В.В. О согласованной динамике магнитного поля и потоков релятивистских электронов в области геостационарной орбиты // Космические исследования. Т. 62. № 4. С. 350—361. 2024. https://doi.org/10.31857/S0023420624040058
  4. Калегаев В.В., Власова Н.А., Пена Ж. Динамика магнитосферы во время геомагнитных бурь 21–22.1. 2005 и 14–15.XII.2006 г. // Космические исследования. Т. 53. № 2. С. 105–117. 2025. https://doi.org/10.7868/S002342061502003X
  5. Кропоткин А.П. Об ускорении электронов внешнего радиационного пояса локальными электрическими полями // Геомагнетизм и аэрономия. Т. 61. № 4. С. 411–417. 2021. https://doi.org/10.31857/S0016794021030093
  6. Тверская Л.В. О границе инжекции электронов в магнитосферу Земли // Геомагнетизм и аэрономия. Т. 26. № 5. С. 864—869. 1986.
  7. Тверской Б.А. Основы теоретической космофизики. Избранные труды. М.: УРСС. С. 336. 2004.
  8. Baker D.N., Erickson P.J., Fennell J.F., Foster J.C., Jaynes A.N., Verronen P.T. Space Weather Effects in the Earth’s Radiation Belts // Space Sci. Rev. V. 214. № 17. Р. 1–60. 2018. https://doi.org/10.1007/s11214-017-0452-7
  9. Blake J.B., Baker D.N., Turner N., Ogilvie K.W., Lepping R.P. Correlation of changes in the outer-zone relativistic electron population with upstream solar wind and magnetic field measurements // Geophys. Res. Lett. V. 24. № 8. Р. 927–929. 1997. https://doi.org/10.1029/97GL00859
  10. Grach V.S., Demekhov A.G. Precipitation of relativistic electrons under resonant interaction with electromagnetic ion cyclotron wave packets // J. Geophys. Res. V. 125. № 2. e2019JA027358. 2020. https://doi.org/10.1029/2019JA027358.
  11. Horne R., Thorne R., Shprits Y. et al. Wave acceleration of electrons in the Van Allen radiation belts // Nature. V. 437. № 7056. Р. 227–230. 2005. https://doi.org/10.1038/nature03939
  12. Imhof W.L., Voss H.D., Mobilia J., Datlowe D.W., Gaines E.E. The precipitation of relativistic electrons near the trapping boundary // J. Geophys. Res. V. 96. № A4. Р. 5619–5629. 1991. https://doi.org/10.1029/90JA02343
  13. Koskinen H.E.J., Kilpua E.K.L. Physics of Earth’s radiation belts: Theory and observations // Series: Astronomy and Astrophysics Library, Springer International Publishing, 272 p. 2022. https://doi.org/10.1007/978-3-030-82167-8 https://library.oapen.org/handle/20.500.12657/51467
  14. Kropotkin A.P. Relativistic electron transport processes associated with magnetospheric substorms // Radiation Measurements. V. 26. № 3. Р. 343–346. 1996. https://doi.org/10.1016/1350-4487(96)00009-1
  15. Mauk B.H., Fox N.J., Kanekal S.G., Kessel R.L., Sibeck D.G., Ukhorskiy A. Science objectives and rationale for the Radiation Belt Storm Probes mission // Space Sci. Rev. V. 179. Р. 3–27. 2013. https://doi.org/10.1007/s11214-012-9908-y
  16. McIlwain C.E. Ring current effects on trapped particles // J. Geophys. Res. V. 71. № 15. Р. 3623–3628. 1966. https://doi.org/10.1029/JZ071015p03623
  17. Moya P.S., Pinto V.A., Sibeck D.G., Shrikanth S.G., Baker D.N. On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations // J. Geophys. Res. – Space Phys. V. 122. Р. 11,100–11,108. 2017. https://doi.org/10.1002/2017JA024735
  18. Parker E.N. Geomagnetic fluctuations and the form of the outer zone of the Van Allen radiation belt // J. Geophys. Res. V. 65. № 10. Р. 3117–3130. 1960.
  19. Paulikas G.A., Blake J.B. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes // Geophys. Monogr. Ser. V. 21. Р. 180–186. 1979. https://doi.org/10.1029/GM021p0180
  20. Reeves G.D., McAdams K.L., Friedel R.H.W., O’Brien T.P. Acceleration and loss of relativistic electrons during geomagnetic storms // Geophys. Res. Lett. V. 30. № 10. Р. 1529–1564. 2003. https://doi.org/10.1029/2002GL016513
  21. Schiller Q., Li X., Blum L., Tu W., Turne D.L., Blake J.B. A nonstorm time enhancement of relativistic electrons in the outer radiation belt // Geophys. Res. Lett. V. 41. № 1. Р. 7–12. 2014. https://doi.org/10.1002/2013GL058485
  22. Sergeev V.A., Tsyganenko N.A. Energetic particle losses and trapping boundaries as deduced from calculations with a realistic magnetic field model // Planet. Space Sci. V. 30. № 10. Р. 999–1006. 1982. https://doi.org/10.1016/0032-633(82)90149-0
  23. Su Z., Xiao F., Zheng H., et al. Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes // Geophys. Res. Lett. V. 41. № 2. Р. 229–235. 2014. https://doi.org/10.1002/2013GL058912
  24. Tang C.L., Zhang J.C., Reeves G.D., Su Z.P., Bake D.N., Spenc H.E., Funsten H.O., Blake J.B., Wygant J.R. Prompt enhancement of the Earth’s outer radiation belt due to substorm electron injections. // J. Geophys. Res. – Space Phys. V. 121. № 12. Р. 11826–11838. 2016. https://doi.org/10.1002/2016JA023550
  25. Tsurutani B.T., Gonzalez W.D. The cause of high-intensity long-duration continuous AE activity (HILDCAS): Interplanetary Alfv’en wave trains // Planet. Space Sci. V. 35. № 4. Р. 405–412. 1987. https://doi.org/10.1016/0032-0633(87)90097-3
  26. Turner D.L., Shprits Y., Hartinger M., Angelopoulos V Explaining sudden losses of outer radiation belt electrons during geomagnetic storms // Nat. Phys. V. 8. Р. 208–212. 2012. https://www.nature.com/articles/nphys2185
  27. Williams D.J., Arens J.F., Lanzerotti L.J. Observations of trapped electrons at low and high altitudes // J. Geophys. Res. – Space Phys. V. 73. № 17. Р. 5673–5696. 1968. https://doi.org/10.1038/nphys2185

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).