Variations of Ultraviolet Radiation in Solar Activity Cycles 22–24

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ultraviolet radiation fluxes in the MgII 280 nm and Lyman-alpha 121.6 nm lines, as well as the relative number of sunspots and the F10.7 radio emission flux were studied. It was found that the relative difference in the amplitudes of these activity indices changed significantly from solar minimum to maximum during the transition from the activity cycles 22 and 23 to cycle 24. In cycle 24, we examined the solar extreme ultraviolet radiation (EUV). Using the SDO/EVE archive of daily observations for 2010-2018, we created a time series of daily EUV radiation fluxes outside of flares. We also analyzed fluxes in the neutral helium lines (He I 58.4 nm and 53.7 nm) and ionized helium lines (He II 30.4 nm and 25.6 nm) during the activity cycle 24. Finally, we estimated how the intensity of these lines was changing with solar activity from the minimum to the maximum of the activity cycle 24. The study of double peaks at the maximum of solar activity, started by M.N.Gnevyshev [Gnevyshev, 1967], was continued. Double peaks were observed in all layers of the solar atmosphere (photosphere, chromosphere and corona).

About the authors

G. V. Yakunina

Sternberg Astronomical Institute, Moscow State University

Email: yakunina45@yandex.ru
Moscow, Russia

References

  1. Bhowmik P., Nandy D. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions // Nat Commun. V. 9. ID 5209. 2018. https://doi.org/10.1038/s41467-018-07690-0
  2. Bruevich E., Bruevich V., Yakunina G. Changed relation between solar 10.7-cm radio flux and some activity indices which describe the radiation at different altitudes of atmosphere during cycles 21–23 // J. Astrophys. Astron. V. 35. P. 1–15. 2014. https://doi.org/10.1007/s12036-014-9258-0
  3. Bruevich E., Yakunina G. The cyclic activity of the sun from observations of the activity indices at different time scales // Moscow University Physics Bulletin. V. 70. P. 282–290. 2015. https://doi.org/10.3103/S0027134915040062
  4. Bruevich E., Yakunina G. Flare activity of the sun and variations in its UV emission during cycle 24 // Astrophysics. V. ID 60. P. 387–400. 2017. https://doi.org/10.1007/s10511-017-9492-7
  5. Bruevich E.A., Kazachevskaya T.V., Yakunina G.V. Variations of solar EUV radiation fluxes in hydrogen lines from observations by the TIMED satellite in cycle 23 and by SDO/EVE in cycle 24 // Ge&Ac. V. 59. № 8. P. 1048–1054. 2020. https://doi.org/10.1134/S0016793219080024
  6. Domingo V., Fleck B., Poland A.I. The SOHO mission: An overview // Sol. Phys. V. 162. P. 1–37. 1995. https://doi.org/10.1007/BF00733425
  7. Gopalswamy N., Michałek G., Yashiro S., Makel P., Akiyama S., Xie H. Implications of the abundance of halo coronal mass ejections for the strength of solar cycle 25 // arXiv.2407.04548. 2024. https://doi.org/10.48550/arXiv.2407.04548
  8. Gnevyshev M.N. On the 11-years cycle of solar activity // Sol. Phys. V. 1. P. 107–120. 1967. https://doi.org/10.1007/BF00150306
  9. Hathaway D.H. The Solar Cycle // Living Rev. Sol. Phys. V.112. ID 4. 2015. https://doi.org/10.1007/lrsp-2015-4
  10. Javaraiah J. North–south asymmetry in solar activity and Solar Cycle prediction, V: prediction for the north–south asymmetry in the amplitude of Solar Cycle 25 // Ap&SS. 366. ID 16. 2021. https://doi.org/10.1007/s10509-021-03922-w
  11. Javaraiah J. Long-term variations in solar activity: predictions for amplitude and north–south asymmetry of Solar Cycle 25 // Sol. Phys. V. 297. ID 33. 2022. https://doi.org/10.1007/s11207-022-01956-z
  12. Kane R.P. Which one is the ‘GNEVYSHEV’ GAP? // Sol. Phys. V. 229. P. 387–407. 2005. https://doi.org/10.1007/s11207-005-7451-7
  13. Karak B., Mandal S., Banerjee D. Double peaks of the Solar Cycle: An explanation from a dynamo model // ApJ. V. 866. ID 17. 2018. https://doi.org/10.3847/1538-4357/aadabd
  14. Kockarts G. Aeronomy, a 20th century emergent science: the role of solar Lyman series // Annales Geophysicae. V. 20. P. 585–598. 2002. https://doi.org/10.5194/angeo-20-585-2002
  15. Lean J., Rotman G., Harder J., and Kopp G. SORCE contributions to new understanding of gobal change and solar variability // Sol. Phys. V. 30. P. 27–53. 2005. https://doi.org/10.1007/s11207-005-1527-2
  16. Lean J.L., Woods T.N., Eparvier F.G., Meier R.R., Strickland D.J., Correira J.T., Evans J.S. Solar extreme ultraviolet irradiance: present, past, and future // J. Geophys. Res. V. 116. ID A01102. 2011. https://doi.org/10.1029/2010JA015901
  17. Lean J.L., Coddington O., Marchenko S., DeLand M.T. A new model of solar ultraviolet irradiance variability with 0.1–0.5 nm spectral resolution // Earth and Space Science. V. 9. № 10. ID e2021EA002211. 2022. https://doi.org/10.1029/2021EA002211
  18. Nandy D. Progress in solar cycle predictions: sunspot cycles 24 – 25 in perspective // Sol. Phys. V. 296. ID 54. 2021. https://doi.org/10.1007/s11207-021-01797-2
  19. Nusinov A.A., Katyushin V.V. Lyman-alpha line intensity as a solar activity index in the far ultraviolet range // Sol. Phys. V. 152. P. 201–206. 1994. https://doi.org/10.1007/BF01473205
  20. Obridko V.N., Shibalova A.S., Sokoloff D.D. Gnevyshev gap in the large-scale magnetic field // Sol. Phys. V. 299. ID 60. 2024. https://doi.org/10.1007/s11207-024-02292-0
  21. Pesnell W. Dean, Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO) // Sol. Phys. V. 275. P. 3–15. 2012. https://doi.org/10.1007/s11207-011-9841-3
  22. Snow M., McClintock W., Woods T. Solar spectral irradiance variability in the ultraviolet from SORCE and UARS SOLSTICE // AdSpR. V. 46. P. 296–302. 2010. https://doi.org/10.1016/j.asr.2010.03.027
  23. Snow M., Weber M., Mahol J., Viere k R., Rihard R. Comparison of Magnesium I Love-to-wing ratio observations during solar minimum 23/24// J. Space Weather Space Clim. V. 4. ID A04. 2014. https://doi.org/10.1051/swsc/2014001
  24. Tobiska W.K., Bouwer S.D., Bowman B.R. The development of new solar indices for use in thermospheric density modelin // J. Atmos. Solar-Terrestrial Phys. V. 70. P. 803–819. 2008. https://doi.org/10.1016/j.jastp.2007.11.001
  25. Veronig A.M., Jain S., Podladchikova T., Pötzi W., Clette F. Hemispheric sunspot numbers 1874–2020 // Astron. Astrophys. V. 652. ID A56. 2021. https://doi.org/10.1051/0004-6361/202141195
  26. Woods T., Rottman G. Solar Lyman irradiance measurements during two solar cycles // JGR. V. 102. P. 8769–8779. 1997. https://doi.org/10.1029/96JD03983
  27. Woods T.N., Eparvier F.G., Hock R. et al. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments // Sol. Phys. V. 275. P. 115–143. 2012. https://doi.org/10.1007/s11207-009-9487-6
  28. Woods T., Harder J., Kopp G., Snow M. Solar-Cycle variability results from the solar radiation and climate experiment (SORCE) mission // Sol. Phys. V. 297. ID 43. 2022. https://doi.org/10.1007/s11207-022-01980-z
  29. Yazev S., Isaeva E., Khos-Erdene B. Solar activity cycle 25: the first three years // Solar-Terrestrial Physics. 9. № 3. P. 3–9. 2023. https://doi.org/10.12737/stp-93202301

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).