TRENDS IN PARAMETERS OF THE F LAYER AND THEIR POSSIBLE CAUSES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of determination of the long-term trends in the parameters of the ionospheric F2 layer (critical frequency, height, total electron content, and slab thickness) are considered. It is shown that the recent results of determination of the foF2 trends agree with the results of the detailed analysis of the data of stations in two hemispheres published by the authors. Possible causes of appearance of the negative trends in the parameters of the F2 layer at the cooling and contraction of the thermosphere due to anthropogenic effects. Currently, a decrease in the atoms-to-molecules ratio in the thermospheric gas and an increase in the rate of the ion-molecular reactions at the temperature decrease in the winter conditions are the most probable causes of appearance of the negative trends in foF2 in the winter months. A comparison of the trends in various parameters is performed and it is shown that these trends agree with each other.

About the authors

A. D. Danilov

Institute of Applied Geophysics

Email: adanilov99@mail.ru
Moscow, Russia

N. A. Berbeneva

Physical Faculty of the Moscow State University

Moscow, Russia

References

  1. Данилов А.Д., Бербенева Н.А. Тренды критической частоты слоя F2 в последнее десятилетие // Геомагнетизм и аэрономия. Т. 63 № 2. С. 139–146. 2023. https://doi.org/10.31857/S0016794022600697
  2. Данилов А.Д., Бербенева Н.А. Зависимость foF2 от индексов солнечной активности по данным ионосферных станций Cеверного и Южного полушарий // Гео­магнетизм и аэрономия. Т. 64. № 2. С. 253–264. 2024. https://doi.org/10.31857/S0016794024020083
  3. Данилов А.Д., Константинова А.В. Уменьшение количества атомного кислорода в верхней атмосфере // Геомагнетизм и аэрономия. Т. 54. № 2. С. 239–245. 2014. https://doi.org/10.7868/S0016794014020060
  4. Данилов А.Д., Константинова А.В. Долговременные вариации параметров средней и верхней атмосферы и ионосферы (обзор) // Геомагнетизм и аэрономия. Т. 60. № 4. С. 411–435. 2020. https://doi.org/10.31857/S0016794020040045
  5. Данилов А.Д., Константинова А.В. Сравнение трендов различных параметров слоя F2 // Геомагнетизм и аэрономия. Т. 64. № 5. C. 0000. 2024.
  6. Данилов А.Д., Константинова А.В., Бербенева Н.А. Детальный анализ суточных вариаций трендов foF2 // Гелиогеофизические исследования. Вып. 39. С. 8–16. 2023. https://doi.org/10.5425/2304-7380_2023_39_8
  7. Данилов А.Д., Константинова А.В., Бербенева Н.А. Тренды критической частоты foF2 по данным станций Северного и Южного полушарий // Геомагнетизм и аэрономия. Т. 64. № 3. С. 386–399. 2024a.
  8. Данилов А.Д., Константинова А.В., Бербенева Н.А. Долговременные тренды высоты максимума ионо­сферного слоя F2 // Геомагнетизм и аэрономия. Т. 64. № 4. С. 489–502. 2024б.
  9. Данилов А.Д., Константинова А.В., Бербенева Н.А. Изменение со временем соотношения между критической частотой и высотой слоя F2 // Геомагнетизм и аэрономия. Т. 64. № 5. С. 000–000. 2024в.
  10. Данилов А.Д., Рябухин И.А. Тренды критической частоты fof2 по данным ст. Свердловск (Арти) // Гелио­геофизические исследования. Вып. 47. С. 4–12. 2025.
  11. Деминов М.Г. Долговременные тренды ионосферных индексов солнечной активности // Геомагнетизм и ­аэрономия. Т. 64. № 6. С. 000–000. 2024.
  12. Andima G., Amabayo E.B., Jurua E., Cilliers P.J. Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions // Ann.Geophys. V. 37. N 1. P. 65−76. https://doi.org/10.5194/angeo-37-65-2019
  13. Cnossen I., Emmert J.T., Garcia R.R., Elias A.G., Mlynczak M.G., Zhang Sh.R. A review of global long-term changes in the mesosphere, thermosphere and ionosphere: a starting point for inclusion in (semi-) empirical mo­dels // Adv. Space Res. 2024. https://doi.org/10.1016/j.asr.2024.10.005
  14. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  15. Danilov A.D., Berbeneva N.A., Konstantinova A.V. Trends in the F2-layer parameters to 2023 // Adv. Space Res. V. 73. № 12. P. 6054−6065. 2024. https://doi.org/10.1016/j.asr.2024.03.036
  16. Duran T., Melendi Y., Zossi B.S., de Haro Barbás B.F., Buezas F.S., Juan A., Elias A.G. Contribution to ionospheric F2 region long-term trend studies through seasonal and diurnal pattern analysis // Global Planet. Change. V. 229. ID 104249. 2023. https://doi.org/10.1016/j.gloplacha.2023.104249
  17. Duran T., Zossi B. S., Melendi Y., de Haro Barbas B.F., Buezas F.S., Elias A.G. Impact of different solar EUV proxies and Ap index on hmF2 trend analysis / Preprint egusphere-2024-2479. 24 p. 2024. https://doi.org/10.5194/egusphere-2024-2479
  18. Elias A., Alberti T., Bravo M., et al. Long-term trends in the ionospheric equivalent slab thickness: Some evidences by Working Team #1 within IAGA WGII-F / Paper presented at the 12th International Workshop on Long-Term Changes and Trends in the Atmosphere. May 6–10, 2024. Ourense, Galicia, Spain. 2024.
  19. Emmert J.T., Mannucci A.J., McDonald S.E., Vergados P. Attribution of interminimum changes in global and hemispheric total electron content // J. Geophys. Res. − Space. V. 122. N 2. P. 2424–2439. 2017. https://doi.org/10.1002/2016JA023680
  20. Fagre M., Zossi B.S., Saavedra Z., Elias A.G. On some consequences of upper atmosphere cooling over HF signal propagation / Paper presented at the 10th Workshop on Long-term Changes and Trends in the Atmosphere. May 14–18, 2018. Hefei, China. 2018.
  21. Gnabahou D.A., Sandwidi S.A., Ouattara F. foF2 long-term trend at a station located near the crest of the Equatorial Ionization Anomaly // International Journal of Geosciences. V. 11. № 8. P. 518−528. 2020. https://doi.org/10.4236/ijg.2020.118027
  22. Jakowski N., Hoque M.M., Mielich J., Hall C. Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term temperature changes in the thermosphere // J. Atmos. Sol.-Terr. Phy. V. 163. P. 91–102. 2017. https://doi.org/10.1016/j.jastp.2017.04.008
  23. Jakowski N., Hoque M.M., Mielich J. Long-term relationships of ionospheric electron density with solar activity // J. Space Weather Spac. V. 14. ID 24. 2024. https://doi.org/10.1051/swsc/2024023
  24. Laštovička J. A review of recent progress in trends in the upper atmosphere // J. Atmos. Sol.-Terr. Phy. V. 163. P. 2–13. 2017. https://doi.org/10.1016/j.jastp.2017.03.009
  25. Laštovička J., Akmaev R.A., Beig G., Bremer J., Emmert J.T., Jacobi C., Jarvis M.J., Nedoluha G., Portnyagin Yu.I., Ulich T. Emerging pattern of global change in the upper atmosphere and ionosphere // Ann. Geophys. V. 26. № 5. P. 1255–1268. 2008. https://doi.org/10.5194/angeo-26-1255-2008
  26. Laštovička J. Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere // Atmos. Chem. Phys. V. 23. № 10. P. 5783–5800. 2023. https://doi.org/10.5194/acp-23-5783-2023
  27. Laštovička J. Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies // Adv. Space Res. V. 73. № 1. P. 685−689. 2024. https://doi.org/10.1016/j.asr.2023.09.047
  28. Lean J.L., Emmert J.T., Picone J.M., Meier R.R. Global and regional trends in ionospheric total electron content // J. Geophys. Res. − Space. V. 116. № 2. ID A00H04. 2011. https://doi.org/10.1029/2010JA016378
  29. Lean J.L., Meier R.R., Picone J.M., Sassi F., Emmert J.T., Richards P.G. Ionospheric total electron content: Spatial patterns of variability // J. Geophys. Res. − Space. V. 121. № 10. P. 10367–10402. 2016. https://doi.org/10.1002/2016ja023210
  30. Natali M.P., Urutti A., Castaño J.M., Zossi B.S., Duran T., Meza A., Elias A.G. Long term global ionospheric total electron content trend analysis // Geophys. Res. Lett. V. 51. № 21. ID e2024GL112248. 2024. https://doi.org/10.1029/2024GL112248
  31. Rios M.G.T.J., Borries C., Liu H., Mielich J. Long-term changes in the dependence of NmF2 on solar flux at Juliusruh //Ann. Geophys. 2024. https://doi.org/10.5194/angeo-2024-11
  32. Rishbeth H., Edwards R. The isobaric F2-layer // J. Atmos. Terr. Phys. V. 51. № 4. P. 321–338. 1989. https://doi.org/10.1016/0021-9169(89)90083-4
  33. Urbář J., Laštovička J. Global long-term trends in the total electron content / Preprint egusphere-2024-3021. 9 p. 2024. https://doi.org/10.5194/egusphere-2024-3021
  34. Yue X., Hu L., Wei Y., Wan W., Ning B. Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation // J. Geophys. Res.− Space. V. 123. № 2. P. 1396–1409. 2018. https://doi.org/10.1002/2017JA024675
  35. Zossi B.S., Medina F.D., Duran T., Elias A.G. The effect of mixing EUV proxies on the correlation with foF2 and on long-term trends estimations // Adv. Space Res. V.74. № 10. P. 4930−4936. 2024a. https://doi.org/10.1016/j.asr.2024.07.064
  36. Zossi B.S., Medina F.D., Duran T., Elias A.G. Selecting the best solar EUV proxy for long-term timescale applications // Adv. Space Res. 2024b. https://doi.org/10.1016/j.asr.2024.07.023

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

In the print version, the article was published under the DOI: 10.31857/S0016794025030055


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).