Criteria for Forcast of Proton Events by Real-Time Solar Observations
- Autores: Struminsky A.B.1, Sadovskii A.M.1, Grigorieva I.Y.2
-
Afiliações:
- Space Research Institute of the Russian Academy of Science (IKI)
- Main (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences
- Edição: Volume 64, Nº 2 (2024)
- Páginas: 163-174
- Seção: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/264079
- DOI: https://doi.org/10.31857/S0016794024020019
- EDN: https://elibrary.ru/DZOMYU
- ID: 264079
Citar
Resumo
The sequence of overcoming threshold values of a number of physical characteristics for proton event forecast in real time is discussed. Each characteristic adds a new physical meaning that refines the forecast. To take into account all the characteristics, the following continuous patrol observations are necessary: 1) the magnetic field of the active region (ascent of the flux) and the general magnetic field of the Sun, which can predict the onset of flare activity several days before the main events; 2) soft X-ray radiation in two channels to calculate the temperature (T) and the measure emission of plasma, which can show the preheating to T > 10 MK required to begin proton acceleration (the first minutes before the start of hard X-ray (HXR) radiation with energies >100 keV); 3) HXR radiation >100 keV or microwave radiation (>3 GHz), which indicate the intensity and duration of operation of the electron accelerator (units and tens of minutes before the arrival of protons with energies >100 MeV); 4) radio emission at plasma frequencies (< 1000 MHz), showing the development of the flare process upward into the corona and leading to a coronal mass ejection (CME) several minutes before the onset of radio bursts of types II and IV (the first tens of minutes before the appearance of a CME in the field of view of the coronagraph); 5) the direction and speed of CME propagation, which determine the conditions for the release of accelerated protons into the heliosphere. These stages of solar proton flares are illustrated by observations of proton events on August 2—9, 2011. To quantitatively predict the onset time, maximum and magnitude of the proton flux, as well as its fluence, it is necessary to create statistical regression models based on all of the listed characteristics of past solar proton events.
Texto integral

Sobre autores
A. Struminsky
Space Research Institute of the Russian Academy of Science (IKI)
Autor responsável pela correspondência
Email: astruminsky@gmail.com
Rússia, Moscow
A. Sadovskii
Space Research Institute of the Russian Academy of Science (IKI)
Email: astruminsky@gmail.com
Rússia, Moscow
I. Grigorieva
Main (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences
Email: astruminsky@gmail.com
Rússia, St. Petersburg
Bibliografia
- Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и aэрономия. 2017. Т. 57. № 6. С. 783—793. https://doi.org/10.7868/S0016794017060025
- Герштейн С.С. Механизм коллективного ускорения солнечных космических лучей // Геомагнетизм и aэрономия. 1979. Т. 19. № 2. С. 202—210.
- Григорьева И.Ю., Струминский А.Б., Логачев Ю.И., Садовский А.М. Корональное распространение солнечных протонов во время и после их стохастического ускорения // Космич. исслед. 2023. Т. 61. № 3. С. 230—241. https://doi.org/10.31857/S0023420622600246
- Григорьева И.Ю., Струминский А.Б. Формирование источника солнечных космических лучей в эруптивных вспышках X6.99 августа 2011 года M5.117 мая 2012 года // Астрон. журн. 2022. Т. 99. № 6. С. 486—495. https://doi.org/10.31857/S0004629922060044
- Ишков В.Н. Прогноз солнечных вспышечных явлений: солнечные протонные события // Изв. РАН. Сер. физ. 2023. Т. 87. № 7. С. 1010—1013.
- Кузнецов Н.В. Радиационные условия на орбитах космических аппаратов. Гл. 3.9 // Модель космоса: научно-информационное издание в 2 т. Т. 1: Физические условия в космическом пространстве // Ред. М.И. Панасюк, Л.С. Новиков. М.: КДУ, 2007. С. 627—641.
- Логачев Ю.И., Базилевская Г.А., Дайбог Е.И., Ишков В.Н., Лазутин Л.Л., Сурова Г.М. Новый параметр в описании событий СКЛ — Энергия баланса между солнечными и галактическими протонами // Ядерная физика. 2018. Т. 81. № 3. С. 371—376. https://doi.org/10.7868/S0044002718030121I
- Лысенко А.Л., Фредерикс Д.Д., Флейшман Г.Д. и др. Рентгеновское и гамма-излучение солнечных вспышек // УФН. 2020. Т. 190. С. 878—894. https://doi.org/10.3367/UFNr.2019.06.038757.
- Нымник Р.А. Модель солнечных космических лучей. Гл. 2.7 // Модель космоса: научно-информационное издание в 2 т. Т. 1: Физические условия в космическом пространстве / Ред. М.И. Панасюк, Л.С. Новиков. М.: КДУ, 2007. С. 402—416.
- Саранцев В.П., Перельштейн Э.А. Коллективное ускорение ионов электронными кольцами. М.: Атомиздат, 1979. С. 210.
- Струминский А.Б., Садовский А.М., Григорьева И.Ю. Расширение источника мягкого рентгеновского излучения и “магнитная детонация” в солнечных вспышках // Письма в АЖ. 2023. Т. 49. № 11. С. 806–818.
- Струминский А.Б., Григорьева И.Ю., Логачев Ю.И., Садовский А.М. Солнечные электроны и протоны в событиях 4—10 сентября 2017 года и сопутствующие явления // Физика плазмы. 2020. Т. 46. № 2. С. 139—153. https://doi.org/10.31857/S0367292120020134
- Струминский А.Б., Григорьева И.Ю., Логачев Ю.И., Садовский А.М. Связь между длительностью и величиной ускорения корональных выбросов массы // Геомагнетизм и аэрономия. 2021. Т. 61. № 6. С. 683—693. https://doi.org/10.31857/S001679402105014X
- Черток И.М. Диагностический анализ солнечных протонных вспышек сентября 2017 г. по их радиовсплескам // Геомагнетизм и аэрономия. 2018. Т. 58. № 4. С. 471—478.
- Цап Ю.Т., Мельников В.Ф. Температура столкновительной плазмы и бетатронное ускорение квазитепловых электронов в солнечных вспышках // Письма в Астрон. журн. 2023. Т. 48. № 4. С. 289—209.
- Ajello M., Baldini L., Bastieri R., et al. First Fermi-LAT solar flare catalog // Astrophys. J. Suppl. 2021. V. 252. P. 13. https://doi.org/10.3847/1538-4365/abd32e
- Alberti L.M., Cliver E.W., Storini M., Consolini G., Lepreti F. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model // Astrophys. J. 2017. V. 838. P. 59. https://doi.org/10.3847/1538-4357/aa5cb8
- Altyntsev A.T., Meshalkina N.S., Lysenko A.L., Fleishman G.D. Rapid variability in the SOL2011—08—04 flare: implications for electron acceleration // Astrophys. J. 2019. V. 883. P. 38. https://doi.org/10.3847/1538-4357/ab380
- Aschwanden M.J. The localization of particle acceleration sites in solar flares and CMEs // Space Sci. Rev. 2006. V. 124. P. 361—372.
- Balch C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model // Space Weather. 2008. V. 6. P. S01001. https://doi.org/10.1029/2007SW000337
- Belov A., Kurt V., Mavromichalaki H., Gerontidou M. Peak-size distributions of proton fluxes and associated soft X-ray flares // Sol. Phys. 2007. V. 246. № 2. P. 457—470.
- Garcia H.A. Temperature and emission measure from GOES soft X-ray measurements // Sol. Phys. 1994a. V. 154. P. 275—308. https://doi.org/10.1007/BF00681100
- Garcia H.A. Temperature and hard X-ray signatures for energetic proton events // Astrophys. J. 1994b. V. 420. P. 422—432. https://doi.org/10.1086/173572
- Garcia H.A. Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays // Space Weather. 2004. V. 2. P. S02002. https://doi.org/10.1029/2003SW000001
- García-Rigo A., Núñez M., Qahwaji R., Ashamari O., Jiggens P., Pérez G., Hernández-Pajares M., Hilgers A. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations // J. Space Weather Space Clim. 2016. V. 6. P. A28. https://doi.org/10.1051/swsc/2016021
- Gopalswamy N., Yashiro G., Michalek G., et al. The SOHO/LASCO CME catalog // Earth, Moon, Planet. 2009. V. 10. P. 4.
- Grigor’eva I. Yu., Struminsky A.B. Flares unaccompanied by interplanetary coronal mass ejections and solar proton events // Geomagn. Aeronomy. 2021. V. 61. Art. ID1263. https://doi.org/10.1134/S0016793221080090
- Hudson H.S. Threshold effect in second-stage acceleration // Sol. Phys. 1978. V. 57. P. 237—240.
- Hudson H.S., Simões P.J.A., Fletcher L., Hayes L.A., Hannah I.G. Hot X-ray onsets of solar flares. 2021. https://doi.org/10.1093/mnras/staa3664, arXiv:2007.05310
- Kahler S.W., Ling A.G. A comparison of solar X-ray flare timescales and peak temperatures with associated coronal mass ejections // Astrophys. J. 2022. V. 934. P. 175 (P. 9). https://doi.org/10.3847/1538-4357/ac7e56
- Kahler S.W., White S.M., Ling A.G. Forecasting E > 50-MeV proton events with the proton prediction system (PPS) // J. Space Weather Space Clim. 2017. V. 7. P. A27. https://doi.org/10.1051/swsc/2017025
- Kahler S.W. Solar energetic particle events and the Kiplinger Effect // Astrophys. J. 2012. V. 747. P. 66. https://doi.org/10.1088/0004-637X/747/1/66
- Kallenrode M.B., Cliver E.W. Rogue SEP events: observational aspects // Proceedings of the 27th International Cosmic Ray Conference. Hamburg, Germany, August 7–15, 2001. Under auspices of the IAUPAP. P. 3314.
- Kiplinger A. Comparative studies of hard X-ray spectral evolution in solar flares with high energy proton events observed at Earth // Astrophys. J. 1995. V. 453. P. 973—986. https://doi.org/10.1086/176457
- Klein K.-L., Trottet G., Klassen A. Energetic particle acceleration and propagation in strong CME-less flares // Sol. Phys. 2010. V. 263. P. 185—208. https://doi.org/10.1007/s11207-010-9540-5
- Ling A.G., Kahler S.W. Peak temperatures of large X-ray flares and associated CME speeds and widths // Astrophys. J. 2020. V. 891. P. 54 (8 p). https://doi.org/103847/1538-4357/ab6f6c
- Müller-Mellin R., Kunow H., Fleißner V., et al. COSTEP — Comprehensive suprathermal and energetic particle analyser // Sol. Phys. 1995. V. 162. P. 483.
- Miller J.A., Cargill P.J., Emslie A.G., et al. Critical issues for understanding particle acceleration in impulsive solar flares // J. Geophys. Res. 1997. V. 102. № A7. P. 14631—14660. https://doi.org/10.1029/97JA00976
- Neupert W.M. Comparison of solar X-ray line emission with microwave emission during flares // Astrophys. J. 1968. V. 153. P. L59–L64.
- Núñez M. Predicting solar energetic proton events (E > 10 MeV) // Space Weather. 2011. V. 9. P. S07003. https://doi.org/10.1029/2010SW000640
- Núñez M. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events // Space Weather. 2015. V. 13. P. 807—819. https://doi.org/10.1002/2015SW001256
- Núñez M. Predicting well-connected SEP events from observations of solar soft X-rays and near-relativistic electrons // J. Space Weather Space Clim. 2018. V. 8. P. A3. https://doi.org/10.1051/swsc/2018023
- Núñez M., Paul-Pena D. Predicting >10 MeV SEP events from solar flare and radio burst data // Universe. 2020. V. 6. P. 161. https://doi.org/10.3390/universe6100161
- Ramaty R., Colgate S.A., Dulk G.A., et al. Energetic particles in solar flares. // Proc. of the 2nd SKYLAB Workshop on Solar Flares. Ed. P.A. Sturrock. 1978. Ch. 4. P. 117—185.
- Shih A.Y., Lin R.P., Smith D.M. RHESSI observations of the proportional acceleration of relativistics >0.3 MeV electrons and >30 MeV protons in solar flares // Astrophys. J. 2009. V. 698 (2). P. L152–L157.
- Swalwell B., Dalla S., Walsch R.W. Soalr energetic particle forcating algorthms and associated false alarms // Solar Phys. 2017. V. 292. P. 173. https://doi.org/10.10007/s11207-017-1196-y
- Zucca P., Núñez M., Klein K. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEPevents // J. Space Weather Space Clim. 2017. V. 7. P. A13. https://doi.org/10.1051/swsc/2017011
- Zuccarello F.P., Seaton D.B., Mierla M., Poedts S., Rachmelz L.A., Romano P., Zuccarello F. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: the 2011 August 4 filament eruption // Astrophys. J. 2014. V. 785. P. 88 (11 p). https://doi.org/10.1088/0004-637X/785/2/88
Arquivos suplementares
