Features of the Structure of the Winter Morning High- and Mid-Latitude Ionosphere

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure of the winter morning (0500–0900 LT) ionosphere in the Northern and Southern hemispheres is studied in detail. For this, CHAMP satellite data for quiet conditions during the period of high solar activity of 2000–2002 are used. Careful analysis is used to identify electron concentration troughs: the high-latitude ionospheric trough; subauroral, or main, ionospheric trough; and mid-latitude ring ionospheric trough. In order to identify and separate the high-latitude and main ionospheric troughs, the model of auroral diffuse precipitation of the Polar Geophysical Institute is used, which describes the boundaries of low-latitude zone I and high-latitude zone II of auroral diffuse precipitation. The longitudinal variations of the precipitation boundaries are corrected using the DMSP satellite data. The problem of separating the troughs becomes more complicated with the passage of local time, because the main ionospheric trough is more strongly displaced to the pole than the auroral oval; therefore, its area of existence begins to overlap the area of existence of the high-latitude trough. In order to identify and separate the main and ring troughs, all, even weak, geomagnetic disturbances for the observation period are analyzed in detail. The asymmetry of the Northern and Southern hemispheres is considered, and similar and different characteristics are identified. Therefore, a more complete and accurate pattern of the structure of the morning ionosphere is obtained.

Авторлар туралы

A. Karpachev

Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: karp@izmiran.ru
Moscow, Russia

Әдебиет тізімі

  1. − Воробьев В.Г., Ягодкина О.И. Сезонные и суточные (UT) вариации положения границ авроральных высыпаний и полярной шапки // Геомагнетизм и аэрономия. Т. 50. № 5. С. 625–633. 2010.
  2. − Ahmed M., Sagalyn R.C., Wildman P.J.L., Burke W.J. Topside ionospheric trough morphology: occurence frequency and diurnal, seasonal and altitude variations // J. Geophys. Res. V. 84. № 2. P. 489–498. 1979. https://doi.org/10.1029/JA084iA02p00489
  3. − Berg L.E., Søraas F. Observations suggesting weak pitch angle diffusion of protons // Scientific/Technical Report No. Ul, by Department of Physics, University of Bergen, Norway. 1972.
  4. − Blagoveschensky D.V., Dobroselsky K.A., Malseva O.A. Main ionospheric trough as a channel for MF propagation in the magnetosphere // Radio Sci. V. 32. № 4. P. 1377− 1490. 1997. https://doi.org/10.1029/97RS00249
  5. − Grebowsky J.M., Tailo H.A., Lindsa J.M. Location and source of ionospheric high latitude troughs // Planet. Space Sci. V. 31. № 1. P. 99–105. 1983. https://doi.org/10.1016/0032-0633(83)90034-X
  6. − Karpachev A.T., Klimenko M.V., Klimenko V.V. Longitudinal variations of the ionospheric trough position // Adv. Space Res. V. 83. № 2. P. 950−956. 2019. https://doi.org/10.1016/j.asr.2018.09.038
  7. − Karpachev A.T. Variations in the winter troughs’ position with local time, longitude, and solar activity in the Northern and Southern hemispheres // J. Geophys. Res. V. 124. № 10. P. 8039–8055. 2019. https://doi.org/10.1029/2019JA026631
  8. − Karpachev A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms // J. Geophys. Res. V. 126. № 1. 2020. https://doi.org/10.1029/2020JA028079
  9. − Karpachev A.T. Advanced separation and classification of ionospheric troughs in midnight conditions // Sci. Rep. V. 12. 13434. 2022a. https://doi.org/10.1038/s41598-022-17591-4
  10. − Karpachev A.T. Advanced classification of ionospheric troughs in the morning and evening conditions // Remote Sensing. V. 14. 4072. 2022б. https://doi.org/10.3390/rs14164072
  11. − Luan X., Wang W., Burns A., Solomon S., Zhang Y., Paxton L.J., Xu J. Longitudinal variations of nighttime electron auroral precipitation in both the Northern and Southern hemispheres from the TIMED global ultraviolet imager // J. Geophys. Res.V. 116. A03302. 2011. https://doi.org/10.1029/2010JA016051
  12. − Moffett R.J., Quegan S. The mid-latitude trough in the electron concentration of the ionospheric F-layer: A review of observations and modeling // J. Atmos. Terr. Phys. V. 45. № 5. P. 315–343. 1983. https://doi.org/10.1016/S0021-9169(83)80038-5
  13. − Muldrew D.B. F layer ionization troughs deduced from Alouette data // J. Geophys. Res. V. 70. № 11. P. 2635–2650. 1965. https://doi.org/10.1029/JZ070i011p02635
  14. − Rodger A.S., Moffett R.J., Quegan S. The role of ion drift in the formation of ionisation troughs in the mid-and high-latitude ionosphere – a review // J. Atmos. Terr. Phys. V. 54. № 1. P. 1–30. 1992. https://doi.org/10.1016/0021-9169(92)90082-V
  15. − Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // J. Atmos. Sol.-Terr. Phys. V. 102. P. 157–171. 2013. https://doi.org/10.1016/j.jastp.2013.05.007
  16. − Werner S., Prölss G.W. The position of the ionospheric trough as a function of local time and magnetic activity // Adv. Space Res., V. 20. № 9. P. 1717–1722. 1997. https://doi.org/10.1016/S0273-1177(97)00578-4

Қосымша файлдар


© А.Т. Карпачев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>