Влияние освещенности трасс на амплитудные характеристики сигналов СДВ-диапазона

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Обсуждается влияние освещенности трассы на амплитуду сверхдлинноволновых радиосигналов при прохождении солнечного терминатора. На основе многолетних измерений (с 2014 по 2020 г.) показано, что в зимний период резкое падение амплитуды сигнала на среднеширотных трассах происходит уже при освещении 15% длины трассы. Анализ вариаций амплитуды сверхдлинноволновых сигналов также позволил оценить высоту их отражения от верхней стенки неосвещенной части волновода hN (D – область ионосферы) и выявить сезонные и годовые вариации этой величины. Экспериментально обнаружен тренд увеличения hN примерно на 4 км за семь лет, вызванный спадом солнечной активности в этот период.

作者简介

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН); Московский физико-технический институт (МФТИ)

编辑信件的主要联系方式.
Email: ekaterinamakh20@gmail.com
Россия, Москва; Россия, Долгопрудный

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН)

编辑信件的主要联系方式.
Email: ryakhovskiy88@yandex.ru
Россия, Москва

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН)

编辑信件的主要联系方式.
Email: poklad@mail.ru
Россия, Москва

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН)

编辑信件的主要联系方式.
Email: boris.gavrilov34@gmail.com
Россия, Москва

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН)

编辑信件的主要联系方式.
Email: ermakvladimir@mail.ru
Россия, Москва

Институт динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН)

编辑信件的主要联系方式.
Email: nsachkasov@yandex.ru
Россия, Москва

参考

  1. – Chand A.E., Kumar S. VLF modal interference distance for a west-east propagation path to Fiji // 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). P. 1306‒1309. 2016. https://doi.org/10.1109/URSIAP-RASC.2016.7601184
  2. – Chand A.E., Kumar S. VLF modal interference distance and nighttime D region VLF reflection height for west-east and east-west propagation paths to Fiji // Radio Sci. V. 52. P. 1004–1015. 2017. https://doi.org/10.1002/2016RS006221
  3. – Crombie D.D. Periodic fading of VLF signals received over long paths during sunrise and sunset // Radio Sci. V. 68 D(1). P. 27–34. 1964. https://doi.org/10.6028/JRES.068D.012
  4. – Crombie D.D. Further Observations of Sunrise and Sunset Fading of Very-Low-Frequency Signals // Radio Sci. V. l (New Series). № l. P. 47–51. 1966. https://doi.org/10.1002/rds19661147
  5. – Cummer S.A. Lightning and Ionospheric Remote Sensing Using VLF/ELF Radio Atmospherics // Department of Electrical Engineering, Stanford University, Source DAI-B 58/09, p. 5001, 137 pages, 1997.
  6. – Desanka Š., Nina A., Vladimir S. Numerical Simulations Of The Effect Of Localised Ionospheric Perturbations On Subionospheric VLF Propagation // Publ. Astron. Obs. Belgrade. № 89. P. 391‒395. 2010. https://doi.org/10.48550/arXiv.1405.3783
  7. – Gavrilov B.G., Ermak V.M., Poklad Y.V. et al. Estimate of variations in the parameters of the midlatitude lower ionosphere caused by the solar flare of September 10, 2017 // Geomagnetism and aeronomy. V. 59. № 5. P. 587‒592. 2019. https://doi.org/10.1134/S0016793219050049
  8. – Han F., Cummer S.A. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales // J. Geophys. Res. V. 115. A09323. 2010. https://doi.org/10.1029/2010JA015437
  9. – Huang F.T., Mayr H.G., Reber C.A., Russell J.M., Mlynczak M., Mengel J.G. Stratospheric and mesospheric temperature variations for the quasi-biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS) // Ann. Geophys. V. 24. P. 2131–2149. 2006. https://doi.org/10.5194/angeo-24-2131-2006
  10. – Lynn K.J.W. VLF Waveguide Propagation: The Basics, Ionospheric Systems Research // AIP Conference Proceedings. V. 1286. Issue 1. P. 3‒41. 2010. https://doi.org/10.1063/1.3512893
  11. – Maurya Ajeet K, Singh R., Kumar S. et al. Waves-like signatures in the D-region ionosphere generated by solar flares // URSI GASS, 2014. https://doi.org/10.1109/URSIGASS.2014.6929796
  12. – Meara L.A. VLF modal interference effects observed on transequatorial paths // Journal of Atmospheric and Terrestrial Physics. V. 35. P. 305‒315. 1973. https://doi.org/10.1016/0021-9169(73)90096-2
  13. – Mitra A.P. Ionospheric effects of solar flares // D. Reidel. Norwell. MA. Springer. 1974. https://doi.org/10.1007/978-94-010-2231-6
  14. – Ryakhovskii I.A., Gavrilov B.G., Poklad Y.V. et al. The state and dynamics of the ionosphere from synchronous records of ULF/VLF and HF/VHF radio signals at geophysical observatory “Mikhnevo” // Izv. Phys. Solid Earth. V. 57. P. 718‒730. 2021. https://doi.org/10.1134/S1069351321050177
  15. – Samanes J.E., Raulin J.-P., Macotela E.L. et al. Estimating the VLF modal interference distance using the South America VLF Network (SAVNET) // Radio Sci. V. 50. P. 122–129. 2015. https://doi.org/10.1002/2014RS005582
  16. – Samanes J., Jean-Pierre R., Cao J., Magalhães A. Nighttime lower ionosphere height estimation from the VLF modal interference distance // J. Atmospheric and Solar-Terrestrial Physics. V. 167. P. 39‒47. 2018. https://doi.org/10.1016/j.jastp.2017.10.009
  17. – Šulić D.M., Srećković, V.A., Mihajlov A.A. A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions // Advances in Space Research. V. 57(4). P. 1029‒1043. 2016. https://doi.org/10.1016/j.asr.2015.12.025
  18. – Takahashi H., Clemesha B.R., Batista P.P. Predominant semi-annual oscillation of the upper mesospheric airglow intensities and temperatures in the equatorial region // J. Atmos. Terr. Phys. V. 57. P. 407–414. 1995. https://doi.org/10.1016/0021-9169(94)E0006-9
  19. – Wait J.R., Spies K.P. Characteristics of the Earth–Ionosphere Waveguide for VLF Radio Waves // Natl. Bur. Std. Note. № 300. 1964.
  20. – Walker D. Phase steps and amplitude fading of VLF signals at dawn and dusk // Radio Science. V. 69D. № 11. P. 1435‒1443. 1965. https://doi.org/10.6028/jres.069d.155

补充文件

附件文件
动作
1. JATS XML
2.

下载 (164KB)
3.

下载 (65KB)
4.

下载 (244KB)
5.

下载 (601KB)
6.

下载 (229KB)
7.

下载 (194KB)
8.

下载 (178KB)
9.

下载 (113KB)

版权所有 © Е.Н. Козакова, И.А. Ряховский, Ю.В. Поклад, Б.Г. Гаврилов, В.М. Ермак, Н.С. Ачкасов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».