Copper in Hydrothermal Systems: a Thermodynamic Description of Hydroxocomplexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The experimental data available in the literature on the solubility of Cu(met.) and Cu2O (cuprite) in water under hydrothermal conditions have been processed. Key experiments were carried out on the solubility of cuprite at 300 C, saturated vapor pressure of H2O, vs. pH of the solution. As a result, a set of values of thermodynamic properties for 25°C, 1 bar and parameters of the HKF (Helgeson-Kirkham-Flowers) and AD (Akinfiev-Diamond) equation of states for Cu(I) hydroxocomplexes was obtained, which make it possible to describe their behavior in a wide range of temperatures (0 – 600 C), pressures (1 – 3000 bar) and densities of aqueous fluid (0.01 – 1 gcm–3). As it has been shown by thermodynamic modeling the Cu+ ion is prevalent in the acidic and weakly alkaline regions of the aqueous solvent over the entire temperature and pressure range studied. The effect of the neutral CuOH hydroxocomplex begins to show up in the alkaline region at T > 300 C and grows with increasing temperature. The second copper hydroxocomplex Cu(OH)2– shows up only in the strongly alkaline region, and the temperature has almost no effect on its behavior

About the authors

N. N. Akinfiev

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: akinfiev@igem.ru
Staromonetny per., 35, Moscow, 119017.

A. V. Zotov

Russian State Geological Prospecting University named after S. Ordzhonikidze

Author for correspondence.
Email: akinfiev@igem.ru
117997, Moscow, st. Miklukho-Maklaya, 23

References

  1. Акинфиев Н.Н, Воронин М.В., Зотов А.В., Прокофьев В.Ю. Экспериментальное исследование устойчивости хлорборатного комплекса и термодинамическое описание водных компонентов в системе B–Na–Cl–O–H до 350°С // Геохимия. 2006. № 9. С. 937–949.
  2. Варьяш Л.Н. Экспериментальное изучение равновесий в системе Cu–Cu2O–H2O в интервале температур 150–450°C // Геохимия. 1989. № 3. С. 412–422.
  3. Рубцова Е.А., Тагиров Б.Р. и др. Совместная растворимость Cu и Ag в хлоридных гидротермальных флюидах (350–650°C, 1000–1500 бар) // Геология руд. месторождений. 2023. В печати.
  4. Akinfiev N.N., Diamond L.W. Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters // Geochim. Cosmochim. Acta, 2003. V. 67. №. 4. P. 613–627.https://doi.org/10.1016/s0016-7037(02)01141-9
  5. Akinfiev N.N., Plyasunov A.V. Application of the Akinfiev–Diamond equation of state to neutral hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) at infinite dilution in water over a wide range of the state parameters, including steam conditions. // Geochim. Cosmochim. Acta, 2014. V. 126. P. 338–351.https://doi.org/10.1016/j.gca.2013.11.013
  6. Born, Von M. Volumen und Hydratationswärme der Ionen. // Zeitschr. Physik, 1920. V. 1. P. 45–48.
  7. Frisch M.J. et al. Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT, 2009.
  8. Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.
  9. Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV. Calculation of activity coefficient, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 KB // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.
  10. Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C // Comp. Geosci. 1992. V. 18. P. 899–947.
  11. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions // J. Phys. Chem. B. 2009. V. 113. P. 6378–6396.
  12. Messerly R.A., Yoon T.J., Jadrich R.B., Currier R.P., Maerzke K.A. Elucidating the temperature and density dependence of silver chloride hydration numbers in high-temperature water vapor: A first-principles molecular simulation study // Chem. Geol. V. 594. P. 120766. https://doi.org/10.1016/j.chemgeo.2022.120766
  13. Palmer D.A. Solubility Measurements of Crystalline Cu2O in Aqueous Solution as a Function of Temperature and pH // J. Solution Chem. 2011. V. 40. P. 1067–1093. https://doi.org/10.1007/s10953-011-9699-x
  14. Pocock F. J., Stewart J. F. The Solubility of Copper and Its Oxides in Supercritical Steam // Journal of Engineering for Power, 1963. V. 85. № 1. P. 33–44. https://doi.org/10.1115/1.3675213
  15. Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 and 1 bar (105 pascals) pressure and at high temperatures // U. S. Geol. Surv. Bull. 1995. P. 2131.
  16. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Cryst. V. A32. P. 751–767.
  17. Shock E.L., Helgeson H C., Sverjensky D.A. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species // Geochim. Cosmochim. Acta. 1989. V. 53. P. 2157–2183.
  18. Shock E.L., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C // Geochim. Cosmochim. Acta. 1988. V. 52. P. 2009–2036.
  19. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmochim. Acta. 1997. V. 61. P. 907–950.
  20. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmochim. Acta. 1997. V. 61. P. 907–950.
  21. Shvarov Yu.V. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Applied Geochemistry. 2015. V. 55. P. 17–27.
  22. Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1359–1412.
  23. Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1359–1412.
  24. Tagirov B.R., Zotov A.V., Akinfiev N.N. Experimental study of dissociation of HCl from to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq) // Geochim. Cosmochim. Acta. 1997. V. 61. P. 4267–4280.
  25. Tanger IV J.C., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for standard partial molal properties of ions and electrolytes. // Amer. J. Sci., 1988. V. 288. P. 19–98.
  26. Wagman D.D., Evans W.H., et al. The NBS tables of chemical thermodynamic properties // Phys. Chem. Ref. Data. 1982. V. 11. Suppl. №. 2.
  27. Wagner W., Pruß A. The IAPWS formulation for the thermodynamic properties of ordinary water substances for general and scientific use // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 387–535.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (121KB)
3.

Download (91KB)
4.

Download (73KB)
5.

Download (93KB)
6.

Download (110KB)
7.

Download (126KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies