Kinetics of Individual С1–С5 Hydrocarbons Formation of Domanik Shale in Hydrothermal Experiments
- 作者: Bushnev D.A.1, Burdelnaya N.S.1, Ilchenko A.A.1, Sennikova Y.D.1, Kuzmin D.V.1
-
隶属关系:
- Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
- 期: 卷 69, 编号 12 (2024)
- 页面: 1174-1180
- 栏目: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/277671
- DOI: https://doi.org/10.31857/S0016752524120044
- EDN: https://elibrary.ru/IDMIRX
- ID: 277671
如何引用文章
详细
Twelve hydrothermal experiments were conducted with Domanik oil shale from the Ukhta region (Chut River) at temperatures of 250–375 °C and periods of 24 hours (6 experiments), 72 hours (5 experiments), and 48 hours (1 experiment). The composition of hydrocarbon gases C1–C5 was studied for each experiment and quantitative data on their yields were obtained. Based on these data, the kinetic spectra of individual gases C1–C5 were established under hydrothermal experiment conditions. The character of the kinetic spectra of individual alkanes C2–C5 is virtually identical; their main narrow maximum corresponds to Ea 55 kcal/mol with an Arrhenius factor of 1×1014 s-1. The distribution of the methane generation potential by activation energies is distinguished by the fact that a significant part of its generation potential falls within the region of activation energies of 60–70 kcal/mol and by the uncertainty of the distribution character in this region.
全文:

作者简介
D. Bushnev
Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: boushnev@geo.komisc.ru
俄罗斯联邦, Syktyvkar
N. Burdelnaya
Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: boushnev@geo.komisc.ru
俄罗斯联邦, Syktyvkar
A. Ilchenko
Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: boushnev@geo.komisc.ru
俄罗斯联邦, Syktyvkar
Ya. Sennikova
Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: boushnev@geo.komisc.ru
俄罗斯联邦, Syktyvkar
D. Kuzmin
Institute of Geology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: boushnev@geo.komisc.ru
俄罗斯联邦, Syktyvkar
参考
- Астахов С.М. (2016) Кинетические аспекты реакций преобразования органического вещества нефтегазоматеринских отложений. Нефтегазовая геология. Теория и практика 11(1). http://www.ngtp.ru/rub/1/5_2016.pdf
- Бурштейн Л.М., Дешин А.А., Парфенова Т.М., Ярославцева Е.С., Козырев А.Н., Сафронов П.И. (2024) Кинетические характеристики керогенов куонамского комплекса нижнего и среднего кембрия Сибирской платформы. Геология и геофизика 65(1), 133–150.
- Бушнев Д.А., Бурдельная Н.С., Большакова М.А. (2023a) Геохимия углеводородов — биомаркеров и изотопов углерода органического вещества доманиковых отложений Тимано-Печорского бассейна. Геохимия 68(2), 139–148.
- Bushnev D.A., Burdelnaya N.S., Bolshakova M.A. (2023a) Geochemistry of Hydrocarbons-Biomarkers and Carbon Isotopes of Organic Matter in the Domanik Deposits of the Timan–Pechora Basin. Geochem. Int. 61(2), 127–136.
- Бушнев Д.А., Бурдельная Н.С., Ильченко А.А., Сенникова Я.Д. (2023b) Состав углеводородных газов сухого пиролиза керогена доманикового сланца после гидротермального эксперимента. Нефтехимия 63(5), 671–678.
- Бушнев Д.А., Бурдельная Н.С., Ильченко А.А., Сенникова Я.Д. (2023c) Образование углеводородных газов доманиковым сланцем при пиролизе в автоклаве в присутствии воды. Вестник геонаук 10(346), 37–41.
- Галушкин Ю.И., Котик И.С. (2023) Оценка реализации углеводородного потенциала нефтегазоматеринских пород юго-западного борта Коротаихинской впадины, Тимано-Печорский бассейн. Геохимия 68(4), 395–408.
- Galushkin Yu.I., Kotik I.S. (2023) Assessment of hydrocarbon potentialconversion in source rocks in the southwestern flank of the Korotaikha depression, Timan-Pechora basin. Geochem. Int. 61(4), 374–386.
- Кашапов P.C., Обласов Н.В., Гончаров И.В., Самойленко В.В., Гринько А.А. Трушков П.В., Фадеева С.В. (2019) Определение кинетических параметров пиролитической деструкции органического вещества нефтегазоматеринских пород. Нефтегазовая геология. Теория и практика 14(1). https://www.ngtp.ru/upload/iblock/667/6_2019.pdf
- Burnham A.K. (2017) Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Amsterdam: Springer, 330 p.
- Burnham A. K., (2017b). Advances needed for kinetic models of vitrinite reflectance. Technical Report, December 2017, Stanford University.
- Espitalié J., Marquis F., Drouet S. (1993) Critical Study of Kinetic Modelling Parameters. In Basin Modelling: Advances and Applications. Spec. Publ. 3 (Eds. Dore A.G., Hermanrud C., Steward D.J., Sylta Ø.). Amsterdam: Elsevier, Norw. Petrol. Soc., 233–242.
- Leushina E., Mikhaylova P., Kozlova E., Polyakov V., Morozov N., Spasennykh M. (2021) The effect of organic matter maturity on kinetics and product distribution during kerogen thermal decomposition: the Bazhenov Formation case study. J. Pet. Sci. Eng. 204, 108751.
- Seewald J.S., Benitez-Nelson B.C., Whelan J.K. (1998) Laboratory and theoretical constraints on the generation and composition of natural gas. Geochim. Cosmochim. Acta 62(9), 1599–1617.
- Sweeney J.J., Burnham A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on Chemical kinetics. AAPG Bulletin 74(10), 1559–1570.
补充文件
