Experimental study of the stability of MoO2CL2° (aq) in hydrothermal solutions at 100-350 °C and saturated vapor pressure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solubility of crystalline MoO3 in HCl solutions with variable concentration was investigated at 100, 155, 200, 250, 300, 350 °C and saturated vapour pressure. The results showed that MoO3 solubility increases with HCl concentration. Using the OptimA program, Gibbs energies of MoO2Cl2 complex have been determined. The stability constants of MoO2Cl2 are calculated according to the reaction: MoO3(c) + 2HCl(aq) → MoO2Cl2o(aq) + + H2O (l). The pK values are 1.07 0.29; 1.06 0.49; 1.74 0.71; 1.83 0.47; 1.50 0.28; 0.95 0.57 at 100, 155, 200, 250, 300, 350 °C (saturated vapour pressure).

Full Text

Restricted Access

About the authors

A. A. Yakimenko

Lomonosov Moscow State University

Author for correspondence.
Email: yakimenko_alice@mail.ru

Faculty of Geology

Russian Federation, Leninskie Gory, 1, Moscow, 119991

A. Yu. Bychkov

Lomonosov Moscow State University

Email: bychkov@geol.msu.ru

Faculty of Geology

Russian Federation, Leninskie Gory, 1, Moscow, 119991

References

  1. Борисов М. В., Шваров Ю. В. (1992) Термодинамика геохимических процессов. М.: МГУ, 256 с.
  2. Карпов З. Г., Мохосоев М. В. (1993) Растворимость и свойства молибдена и вольфрама. Справочник. Новосибирск: ВО Наука, 504 с.
  3. Кудрин А. В. (1985) Экспериментальное исследование растворимости тугариновита MoO2 в водных растворах при повышенных температурах. Геохимия. (6), 870–883.
  4. Кудрин А. В. (1989) Поведение молибдена в водных растворах хлоридов натрия и калия при температурах 300–450 °C. Геохимия. (1), 99–112.
  5. Лурье Ю. Ю. (1984) Аналитическая химия промышленных сточных вод. M.: Химия, 448 с.
  6. Покалов B. T. (1972) Генетические типы и поисковые критерии эндогенных месторождений молибдена. M.: Недра, 272 с.
  7. Рехарский В. И. (1973) Геохимия молибдена в эндогенных процессах. Академия наук СССР. М.: Наука, 303 с.
  8. Суворов А. В., Новиков Г. И., Добротин Р. Б., Тарасов А. В. (1964) Термодинамическое изучение оксихлоридов молибдена и вольфрама. Химия редких элементов. Ленинград: Изд-во Ленинград. ун-та, 26–32.
  9. Akinfiev N. N., Diamond L. W. (2003) Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters. Geochim. Cosmochim. Acta. 67(4), 613–627.
  10. Borg, S., Liu, W., Etschmann, B., Tian, Y., Brugger, J. (2012) An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385 °C and 600 bar. Geochim. Cosmochim. Acta. 92, 292–307.
  11. Crea F., Stefano C., Irto A., Milea D., Pettignano A., Sammartano S. (2017) Modeling the acid-base properties of molybdate (VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations. Journal of Molecular Liquids. 229, 15–26.
  12. Dadze T. P., Kashirtseva G. A., Novikov M.P, Plyasunov A. V. (2017) Solubility of MoO3 in acid solutions and vapor-liquid distribution of molybdic acid. Fluid Phase Equilibria. 440, 64–76
  13. Dadze T. P., Kashirtseva G. A., Novikov M.P, Plyasunov A. V. (2018) Solubility of calcium molybdate in aqueous solutions at 573 K and thermodynamics of monomer hydrolysis of Mo (VI) at elevated temperatures. Monatsh Chem. 149, 261–282.
  14. Dadze T. P., Kashirtseva G. A., Novikov M. P., Plyasunov A. V. (2018) Solubility of MoO3 in Aqueous Acid Chloride-Bearing Solutions at 573 K. J. Chem. Eng. Data. 63, 1827–1832.
  15. Dement’ev I.A., Kozin A. O., Kondrat’ev Yu.V., Korol’kov D.V., Proyavkin A. A. (2007) Mononuclear, Polynuclear, and Cluster Complexes of Molybdenum and Their Reactions as Models of Biochemical Systems and Processes. Russian Journal of General Chemistry. 77(5), 822–843.
  16. Gamsjäger H., Morishita M. (2015) Thermodynamic properties of molybdate ion: reaction cycles and experiments. Pure Appl. Chem. 87(5), 461–476.
  17. Guo J., Zavalij P., Whittingham M.S (1995) Metastable Hexagonal Molybdates: Hydrothermal Preparation, Structure, and Reactivity. Journal of Solid State Chemistry. 117(2), 323–332.
  18. Helgeson H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science. 26(7), 729–804.
  19. Minubayeva Z., Seward T. M. (2010) Molybdic acid ionisation under hydrothermal conditions to 300 °C. Geochim. Cosmochim. Acta. 74, 4365–4374.
  20. Rempel K. U., Migdisov, A.A., Williams-Jones A.E. (2006) The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis. Geochim. Cosmochim. Acta. 70, 687–696.
  21. Sasaki Y., Lindqvist I., Sillen L. G. (1959) On the first equilibrium steps in the acidification of the molybdate ion. J. Inorg. Nuc. Chem. 9, 93–100.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the solubility of molybdenum (VI) oxide in HCl on the duration of the experiment at 155 °C.

Download (59KB)
3. Fig. 2. Dependence of the solubility of molybdenum (VI) oxide on the logarithm of the HCl concentration at a temperature of 155 °C.

Download (74KB)
4. Fig. 3. Dependence of the solubility of molybdenum (VI) oxide on the logarithm of the HCl concentration at temperatures from 100 to 350 °C.

Download (247KB)
5. Fig. 4. Dependence of K4 on temperature during extrapolation.

Download (76KB)
6. Fig. 5. Diagram of the fields of predominance of Mo (VI) forms in HCl solution at T from 100 to 450 °C and P from 1 to 1000 bar.

Download (240KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies