Genetic Factors of Reflex Epilepsies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reflex epilepsy is a relatively rare form of epilepsy, occurring only in five percent of all cases of this disease. The genetic factors of reflex epilepsy are diverse and, in general, poorly studied. This review examines the main results obtained in recent years in the study of molecular genetic factors of reflex epilepsy, including new data on the mechanisms of genetic regulation in reflex epilepsy caused by triggers such as audio and video stimulation, food consumption, reading, contact with water and hypoxia. The results obtained in studies on animal models and patients using next-generation sequencing technology are presented.

About the authors

N. A. Dudko

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: dudko@rogaevlab.ru
Russia, 354340, Krasnodar region, pgt. Sirius; Russia, 119991, Moscow

S. S. Kunizheva

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Genetics and Genetic Technologies, Lomonosov Moscow State University

Email: dudko@rogaevlab.ru
Russia, 354340, Krasnodar region, pgt. Sirius; Russia, 119991, Moscow; Russia, 119234, Moscow

T. V. Andreeva

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Genetics and Genetic Technologies, Lomonosov Moscow State University

Email: dudko@rogaevlab.ru
Russia, 354340, Krasnodar region, pgt. Sirius; Russia, 119991, Moscow; Russia, 119234, Moscow

I. Yu. Adrianova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: dudko@rogaevlab.ru
Russia, 119991, Moscow

E. I. Rogaev

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Center for Genetics and Genetic Technologies, Lomonosov Moscow State University; Department of Psychiatry, UMass Chan Medical School

Email: dudko@rogaevlab.ru
Russia, 354340, Krasnodar region, pgt. Sirius; Russia, 119234, Moscow; USA, 01545, MA, Worcester

References

  1. Fisher R.S., Acevedo C., Arzimanoglou A. et al. ILAE official report: A practical clinical definition of epilepsy // Epilepsia. 2014. V. 55. № 4. P. 475–482. https://doi.org/10.1111/epi.12550
  2. Dorothée G.A., Trenité K.-N. Provoked and reflex seizures: Surprising or common? // Epilepsia. 2012. V. 53. P. 105–113. https://doi.org/10.1111/j.1528-1167.2012.03620.x
  3. Okudan Z.V., Özkara Ç. Reflex epilepsy: Triggers and management strategies // Neuropsychiatr. Dis. Treat. 2018. V. 14. P. 327–337. https://doi.org/10.2147/NDT.S107669
  4. Koepp M.J., Caciagli L., Pressler R.M. et al. Reflex seizures, traits, and epilepsies: From physiology to pathology // Lancet Neurol. 2016. V. 15. № 1. P. 92–105. https://doi.org/10.1016/S1474-4422(15)00219-7
  5. Holmes G.L., Blair S., Eisenberg E. et al. Tooth-brushing-induced epilepsy // Epilepsia. 1982. V. 23. № 6. P.657–661. https://doi.org/10.1111/j.1528-1157.1982.tb05081.x
  6. Bickford R.G., Whelan J.L., Klass D.W., Corbin K.B. Reading epilepsy: Clinical and electroencephalographic studies of a new syndrome // Trans. Am. Neurol. Assoc. 1956. 81st Meeting. P. 100–102.
  7. Syed R. Hot water epilepsy: A rare form of reflex epilepsy // J. Neurosci. Rural Practice. 2010. V. 1. № 2. P. 99–101. https://doi.org/10.4103/0976-3147.71724
  8. Wei F., Yan L.M., Su T. et al. Ion channel genes and epilepsy: Functional alteration, pathogenic potential, and mechanism of epilepsy // Neurosci. Bull. 2017. V. 3. № 4. P. 455–477. https://doi.org/10.1007/s12264-017-0134-1
  9. Steinlein O.K. Genetics and epilepsy // Dialogues Clin. Neurosci. 2008. V. 10. № 1. P. 29–38. https://doi.org/10.31887/DCNS.2008.10.1/oksteinlein
  10. Garbuz D.G., Davletshin A.A., Litvinova S.A. et al. Rodent models of audiogenic epilepsy: Genetic aspects, advantages, current problems and perspectives // Biomedicines. 2022. V. 10. № 11. P. 29–34. https://doi.org/10.3390/biomedicines10112934
  11. Perucca P., Bahlo M., Berkovic S.F. The genetics of epilepsy // Annu. Rev. Genomics Hum. Genet. 2020. V. 21. P. 205–230. https://doi.org/10.1146/annurev-genom-120219-074937
  12. Wang J., Lin Z.J., Liu L. et al. Epilepsy-associated genes // Seizure. 2017. V. 44. P. 11–20. https://doi.org/10.1016/j.seizure.2016.11.030
  13. Thakran S., Guin D., Singh P. et al. Genetic landscape of common epilepsies: Advancing towards precision in treatment // Int. J. Mol. Sci. 2020. V. 21. № 20. P. 77–84. https://doi.org/10.3390/ijms21207784
  14. Scheffer I.E., Berkovic S., Capovilla G. et al. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology // Epilepsia. 2017. V. 58. № 4. P. 512–521. https://doi.org/10.1111/epi.13709
  15. Chen Z., Brodie M.J., Liew D., Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study // JAMA Neurol. 2018. V. 75. № 3. P. 279–286. https://doi.org/10.1001/jamaneurol.2017.3949
  16. Avanzini G. Musicogenic seizures // Ann. of the N. Y. Acad. of Sci. 2003. V. 999. № 1. P. 95–102. https://doi.org/10.1196/annals.1284.008
  17. Critchley M. Musicogenic epilepsy // Brain. 1937. P. 6013–6027.
  18. Sanchez-Carpintero R., Patiño-Garcia A., Urrestarazu E. Musicogenic seizures in Dravet syndrome // Dev. Med. Child Neurol. 2013. V. 55. P. 668–670. https://doi.org/10.1111/dmcn.12138
  19. Ding J., Li X., Tian H., Wang L. et al. SCN1A mutation-beyond Dravet syndrome: A systematic review and narrative synthesis // Front. Neurol. 2021 V. 12. P. 743–726. https://doi.org/10.3389/fneur.2021.743726
  20. Michelucci R., Gardella E., De Haan G.J. et al. Telephone-induced seizures: A new type of reflex epilepsy // Epilepsia. 2004. V. 45. P. 280–283. https://doi.org/10.1111/j.0013-9580.2004.39703.x
  21. Michelucci R., Mecarelli O., Bovo G. et al. A de novo LGI1 mutation causing idiopathic partial epilepsy with telephone-induced seizures // Neurology. 2007. V. 68. № 24. P. 2150–2151. https://doi.org/10.1212/01.wnl.0000264932.44153.3c
  22. Brodtkorb E., Michler R.P., Gu W., Steinlein O.K. Speech-induced aphasic seizures in epilepsy caused by lgi1 mutation // Epilepsia. 2005. V. 46. P. 963–966. https://doi.org/10.1111/j.1528-1167.2005.47104.x
  23. Nobile C., Michelucci R., Andreazza S. et al. LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy // Hum. Mutat. 2009. V. 30. P. 530–536. https://doi.org/10.1002/humu.20925
  24. Chabrol E., Navarro V., Provenzano G. et al. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice // Brain. 2010. V. 133. P. 2749–2762. https://doi.org/10.1093/brain/awq171
  25. Poletaeva I.I., Surina N.M., Kostina Z.A. et al. The Krushinsky-Molodkina rat strain: The study of audiogenic epilepsy for 65 years // Epilepsy Behav. 2017. V. 71. P. 130–141. https://doi.org/10.1016/j.yebeh.2015.04.072
  26. Dailey J.W., Reigel C.E., Mishra P.K., Jobe P.C. Neurobiology of seizure predisposition in the genetically epilepsy-prone rat // Epilepsy Research. 1989. V. 3. № 1. P. 3–17. https://doi.org/10.1016/0920-1211(89)90063-6
  27. Garcia-Cairasco N., Umeoka E.H.L., Cortes de Oliveira J.A. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives // Epilepsy & Behavior. 2017. V. 71. Pt. B. P. 250–273. https://doi.org/10.1016/j.yebeh.2017.04.001
  28. Garcia-Gomes M.S.A., Zanatto D.A., Galvis-Alonso O.Y. et al. Behavioral and neurochemical characterization of the spontaneous mutation tremor, a new mouse model of audiogenic seizures // Epilepsy Behav. 2020. V. 105. https://doi.org/10.1016/j.yebeh.2020.106945
  29. Sánchez-Benito D., Hyppolito M.A., Alvarez-Morujo A.J. et al. Morphological and molecular correlates of altered hearing sensitivity in the genetically audiogenic seizure-prone hamster GASH/Sal // Hear. Res. 2020. V. 392. https://doi.org/10.1016/j.heares.2020.107973
  30. López-López D., Gómez-Nieto R., Herrero-Turrión M.J. et al. Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures // Epilepsy Behav. 2017. V. 71. Pt. B. P. 226–237. https://doi.org/10.1016/j.yebeh.2015.12.020
  31. Díaz-Casado E., Gómez-Nieto R., de Pereda J.M. et al. Analysis of gene variants in the GASH/Sal model of epilepsy // PLoS One. 2020. V. 15. № 3. https://doi.org/10.1371/journal.pone.0229953
  32. Chernigovskaya E.V., Korotkov A.A., Dorofeeva N.A. et al. Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling // Epilepsy Behav. 2019. V. 99. https://doi.org/10.1016/j.yebeh.2019.106494
  33. Chuvakova L.N., Funikov S.Yu., Rezvykh A.P. et al. Transkriptome of the Krushinsky-Molodkina audiogenic rat strain and identification of possible audiogenic epilepsy-associated genes // Front. Mol. Neurosci. 2022. V. 14. https://doi.org/10.3389/fnmol.2021.738930
  34. Bertocchi I., Eltokhi A., Rozov A. et al. Voltage-independent GluN2A-type NMDA receptor Ca2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice // Commun. Biol. 2021. V. 4. № 59. https://doi.org/10.1038/s42003-020-01538-4
  35. Gonzalez D., Tomasek M., Hays S. et al. Audiogenic seizures in the Fmr1 Knock-Out mouse are induced by Fmr1 deletion in subcortical, VGlut2-expressing excitatory neurons and require deletion in the inferior colliculus // J Neurosci. 2019. V. 39. № 49. P. 9852–9863. https://doi.org/10.1523/JNEUROSCI.0886-19.2019
  36. Skradski S.L., Clark A.M., Jiang H. et al. A novel gene causing a mendelian audiogenic mouse epilepsy // Neuron. 2001. V. 31. P. 537–544. https://doi.org/10.1016/s0896-6273(01)00397-X
  37. Charizopoulou N., Lell A., Schraders M. et al. Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human // Nat. Commun. 2011. V. 2. P. 201. https://doi.org/10.1038/ncomms1200
  38. Petrova N.V., Marakhonov A.V., Balinova N.V. et al. Genetic variant c.245A>G (p.Asn82Ser) in GIPC3 gene is a frequent cause of hereditary nonsyndromic sensorineural hearing loss in Chuvash population // Genes. 2021. V. 12. https://doi.org/10.3390/genes12060820
  39. Garcia-Gomes M.S.A., Yamamoto P.K., Massironi S.M.G. et al. Alteration of hippocampal Egr3, GABA A receptors, Il-1β, Il6 and Ccl3 expression in audiogenic tremor mice after seizure // Epilepsy Behav. 2022. V. 137. (Pt. A). https://doi.org/10.1016/j.yebeh.2022.108962
  40. Padmanaban V., Inati S., Ksendzovsky A., Zaghloul K. Clinical advances in photosensitive epilepsy // Brain Research. 2019. V. 1703. P. 18–25. https://doi.org/10.1016/j.brainres.2018.07.025
  41. Tauer U., Lorenz S., Lenzen K.P. et al. Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy // Ann. Neurol. 2005. V. 57. P. 866–873. https://doi.org/10.1002/ana.20500
  42. Stephani U., Tauer U., Koeleman B. et al. Genetics of photosensitivity (photoparoxysmal response): A review // Epilepsia. 2004. V. 4. P. 19–23. https://doi.org/10.1111/j.0013-9580.2004.451008.x
  43. Manis A.M., Palygin O., Isaeva E. et al. KCNJ16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat // JCI Insight. 2021. V. 6. № 1. https://doi.org/10.1172/jci.insight.143251
  44. Pinto D., Westland B., de Haan C.-J. et al. Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response: Evidence for linkage on chromosomes 7q32 and 16p13 // Hum. Mol. Genet. 2005. V. 14. № 1. P. 171–178. https://doi.org/10.1093/hmg/ddi018
  45. Gupta M., Polinsky M., Senephansiri H. et al. Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency // Neurobiol. Dis. 2004. V. 16. № 3. P. 556–562. https://doi.org/10.1016/j.nbd.2004.04.008
  46. Dervent A., Gibson K.M., Pearl P.L. et al. Photosensitive absence epilepsy with myoclonias and heterozygosity for succinic semialdehyde dehydrogenase (SSADH) deficiency // Clin. Neurophysiol. 2004. V. 115. № 6. P. 1417–1422. https://doi.org/10.1016/j.clinph.2004.01.002
  47. Liao M., Kundap U., Rosch R.E. et al. Targeted knockout of GABA-A receptor gamma 2 subunit provokes transient light-induced reflex seizures in zebrafish larvae // Dis. Model. Mech. 2019. V. 12. № 11. P. 1–11. https://doi.org/10.1242/dmm.040782
  48. Menon R.N., Nambiar P.N., Keni R.R. et al. Drug-resistant “Non-Lesional” visual sensitive epilepsies of childhood – electroclinical phenotype-genotype associations // Neurol. India. 2021. V. 69. № 6. P. 1701–1705. https://doi.org/10.4103/0028-3886.333508
  49. Galizia E.C., Myers C.T., Leu C. et al. CHD2 variants are a risk factor for photosensitivity in epilepsy // Brain. 2015. V. 138. № 5. P. 198–207. https://doi.org/10.1093/brain/awv052
  50. Dorothée G.A., Trenité K.-N., Volkers L. et al. Clinical and genetic analysis of a family with two rare reflex epilepsies // Seizure. 2015. V. 29. P. 90–96. https://doi.org/10.1016/j.seizure.2015.03.020
  51. Crippa M., Malatesta P., Bonati M.T. et al. A familial t(4;8) translocation segregates with epilepsy and migraine with aura // Ann. Clin. Transl. Neurol. 2020. V. 7. № 5. P. 855–859. https://doi.org/10.1002/acn3.51040
  52. Shimizu A., Asakawa S., Sasaki T. et al. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: A candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3–q24.1 // Biochem. Biophys. Res. Commun. 2003. V. 309. № 1. P. 143–154. https://doi.org/10.1016/S0006-291X(03)01555-9
  53. Sadleir L.G., de Valles-Ibáñez G., King C. et al. Inherited RORB pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy // Epilepsia. 2020. V. 61. P. e23–e29. https://doi.org/10.1111/epi.16475
  54. Liu H., Aramaki M., Fu Y., Forrest D. Retinoid-related orphan receptor β and transcriptional control of neuronal differentiation // Curr. Top. Dev. Biol. 2017. V. 125. P. 227–255. https://doi.org/10.1016/bs.ctdb.2016.11.009
  55. Lo Barco T., Kaminska A., Solazzi R. et al. SYNGAP1-DEE: A visual sensitive epilepsy // Clin. Neurophysiol. 2021. V. 132. № 4. P. 841–850. https://doi.org/10.1016/j.clinph.2021.01.014
  56. Douaud M., Feve K., Pituello F. et al. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model // PLoS One. 2011. V. 6. № 10. https://doi.org/10.1371/journal.pone.0026932
  57. Calame D.G., Herman I., Riviello J.J. A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus // Epilepsy Behav. Rep. 2021. V. 7. № 15. https://doi.org/10.1016/j.ebr.2020.100425
  58. Wang D., Zhou Q., Ren L., Lin Y. et al. Levetiracetam-induced a new seizure type in a girl with a novel SV2A gene mutation // Clin. Neurol. Neurosurg. 2019. V. 181. P. 64–66. https://doi.org/10.1016/j.clineuro.2019.03.020
  59. Serajee F.J., Huq A.M. Homozygous mutation in synaptic vesicle glycoprotein 2A gene results in intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation // Pediatr. Neurol. 2015. V. 52. V. 6. P. 642–646. https://doi.org/10.1016/j.pediatrneurol.2015.02.011
  60. Van Vliet E.A., Aronica E., Redeker S. et al. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy // Epilepsia. 2009. V. 50. № 3. P. 422–433. https://doi.org/10.1111/j.1528-1167.2008.01727.x
  61. Von Klopmann T., Ahonen S., Espadas-Santiuste I. et al. Canine Lafora disease: An unstable repeat expansion disorder // Life (Basel). 2021. V. 11. № 7. https://doi.org/10.3390/life11070689
  62. Araya N., Takahashi Y., Shimono M. et al. A recurrent homozygous NHLRC1 variant in siblings with Lafora disease // Hum. Genome. Var. 2018. V. 5. P. 16. https://doi.org/10.1038/s41439-018-0015-9
  63. Girges C., Vijiaratnam N., Wirth T. et al. Seizures triggered by eating – a rare form of reflex epilepsy: A systematic review // Seizure. 2020. V. 83. P. 21–31. https://doi.org/10.1016/j.seizure.2020.09.013
  64. Seneviratne U., Seetha T., Pathirana R., Rajapakse P. High prevalence of eating epilepsy in Sri Lanka // Seizure. 2003. V. 12. № 8. P. 604–605. https://doi.org/10.1016/s1059-1311(03)00110-9
  65. Vercellino F., Siri L., Brisca G. et al. Symptomatic eating epilepsy: Two novel pediatric patients and review of literature // Ital. J. Pediatr. 2021. V. 47. № 1. P. 137. https://doi.org/10.1186/s13052-021-01051-2
  66. Suls A., Jaehn J.A., Kecskés A. et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome // Am. J. Hum. Genet. 2013. V. 93. № 5. P. 967–975. https://doi.org/10.1016/j.ajhg.2013.09.017
  67. Rahman S., Copeland W.C. POLG-related disorders and their neurological manifestations // Nat. Rev. Neurol. 2019. V. 15. № 1. P. 40–52. https://doi.org/10.1038/s41582-018-0101-0
  68. Von Stülpnagel C., Hartlieb T., Borggräfe I. et al. Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: Review of literature and report of 8 cases // Seizure. 2019. V. 65. P. 131–137. https://doi.org/10.1016/j.seizure.2018.12.020
  69. Agarwal M., Johnston M.V., Stafstrom C.E. SYNGAP1 mutations: Clinical, genetic, and pathophysiological features // Int. J. Dev. Neurosci. 2019. V. 78. P. 65–76. https://doi.org/10.1016/j.ijdevneu.2019.08.003
  70. De Palma L., Boniver C., Cassina M. et al. Eating-induced epileptic spasms in a boy with MECP2 duplication syndrome: Insights into pathogenesis of genetic epilepsies // Epileptic Disorders. 2012. V. 14. № 4. P. 414–417. https://doi.org/10.1684/epd.2012.0546
  71. Ramocki M.B., Peters S.U., Tavyev Y.J. et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome // Ann. Neurol. 2009. V. 66. № 6. P. 771–782. https://doi.org/10.1002/ana.21715
  72. Martínez A.R., Colmenero M.I.A., Pereira A.G. et al. Reflex seizures in Rett syndrome // Epileptic Disord. 2011. V. 13. № 4. P. 389–393. https://doi.org/10.1684/epd.2011.0475
  73. Accogli A., Wiegand G., Scala M. et al. Clinical and genetic features in patients with reflex bathing epilepsy // Neurology. 2021. V. 97. № 6. P. 577–586. https://doi.org/10.1212/WNL.0000000000012298
  74. Satishchandra P. Hot-water epilepsy // Epilepsia. 2003. V. 44. P. 29–32. https://doi.org/10.1046/j.1528-1157.44.s.1.14.x
  75. Krygier M., Zawadzka M., Sawicka A., Mazurkiewicz-Bełdzińska M. Reflex seizures in rare monogenic epilepsies // Seizure. 2022. V. 97. P. 32–34. https://doi.org/10.1016/j.seizure.2022.03.004
  76. Epi4K Consortium. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies // Am. J. Hum. Genet. 2016. V. 99. № 2. P. 287–298. https://doi.org/10.1016/j.ajhg.2016.06.003
  77. Alehabib E., Esmaeilizadeh Z., Ranji-Burachaloo S. et al. Clinical and molecular spectrum of P/Q type calcium channel Cav2.1 in epileptic patients // Orphanet J. Rare Dis. 2021. V. 16. P. 461. https://doi.org/10.1186/s13023-021-02101-y
  78. Danti F.R., Galosi S., Romani M. et al. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome // Neurol. Genet. 2017. V. 3. № 2. https://doi.org/10.1212/NXG.0000000000000143
  79. Mattioli F., Hayot G., Drouot N. et al. De novo frameshift variants in the neuronal splicing factor NOVA2 result in a common C-terminal extension and cause a severe form of neurodevelopmental disorder // Am. J. Hum. Genet. 2020. V. 106. № 4. P. 438–452. https://doi.org/10.1016/j.ajhg.2020.02.013
  80. Peikes T., Hartley J., Mhanni A. et al. Reflex seizures in a patient with CDKL5 deficiency disorder // Can. J. Neurol Sci. 2019. V. 46. № 4. P. 482–485. https://doi.org/10.1017/cjn.2019.29
  81. Ullal G.R., Satischandra P., Shankar S.K. Hyperthermic seizures: An animal model for hot water epilepsy // Seizure. 1996. V. 5. № 3. P. 221–228. https://doi.org/10.1016/s1059-1311(96)80040-9
  82. Fukuda M., Morimoto T., Nagao H., Kida K. Clinical study of epilepsy with severe febrile seizures and seizures induced by hot water bath // Brain Dev. 1997. V. 19. № 3. P. 212–216. https://doi.org/10.1016/s0387-7604(96)00564-5
  83. Ratnapriya R., Satishchandra P., Kumar S.D. et al. A locus for autosomal dominant reflex epilepsy precipitated by hot water maps at chromosome 10q21.3-q22.3 // Hum. Genet. 2009. V. 125 P. 541–549. https://doi.org/10.1007/s00439-009-0648-3
  84. Ratnapriya R., Satishchandra P., Dilip S. et al. Familial autosomal dominant reflex epilepsy triggered by hot water maps to 4q24-q28 // Hum. Genet. 2009. V. 126. № 5. P. 677–683. https://doi.org/10.1007/s00439-009-0718-6
  85. Zhou Q., Wang J., Xia L., Li R., et al. SYN1 mutation causes X-linked toothbrushing epilepsy in a Chinese family // Front. Neurol. 2021. V. 20. № 12. 736977. https://doi.org/10.3389/fneur.2021.736977
  86. Reijnders M.R.F., Janowski R., Alvi M. et al. PURA syndrome: Clinical delineation and genotypephenotype study in 32 individuals with review of published literature // JMG. 2017. V. 55. № 2. P. 1–10. https://doi.org/10.1136/jmedgenet-2017-104946
  87. Solazzi R., Fiorini E., Parrini E. et al. Early-onset bradykinetic rigid syndrome and reflex seizures in a child with PURA syndrome // Epileptic Disord. 2021. V. 23. № 5. P. 745–748. https://doi.org/10.1684/epd.2021.1328
  88. Menghi V., Bissuli F., Tinupir F., Nobili L. Sleep-related hypermotor epilepsy: Prevalence, impact and management strategies // Nat. and Sci. of Sleep. 2018. V. 10. P. 317–326. https://doi.org/10.2147/NSS.S152624
  89. Tinuper P., Bisulli F., Cross J.H. et al. Definition and diagnostic criteria of sleep-related hypermotor epilepsy // Neurology. 2016. V. 86. № 19. P. 1834–1842. https://doi.org/10.1212/WNL.0000000000002666
  90. Steinlein O.K., Mulley J.C., Propping P. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha-4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy // Nat. Genet. 1995. V. 11. № 2. P. 201–203. https://doi.org/10.1038/ng1095-201
  91. Villa C., Colombo G., Meneghini S. et al. CHRNA2 and nocturnal frontal lobe epilepsy: Identification and characterization of a novel loss of function mutation // Front. Mol. Neurosci. 2019. V. 12. 17. https://doi.org/10.3389/fnmol.2019.00017
  92. Brodtkorb E., Myren-Svelstad S., Knudsen-Baas K.M., et al. Precision treatment with nicotine in autosomal dominant sleep-related hypermotor epilepsy (ADSHE): An observational study of clinical outcome and serum cotinine levels in 17 patients // Epilepsy Res. 2021. V. 178. https://doi.org/10.1016/j.eplepsyres.2021.106792
  93. Heron S.E., Smith K.R., Bahlo M. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy // Nat. Genet. 2012. V. 44. № 11. P. 1188–1190. https://doi.org/10.1038/ng.2440
  94. Barcia G., Fleming M.R., Deligniere A. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy // Nat. Genet. 2012. V. 44. № 11. P. 1255–1259. https://doi.org/10.1038/ng.2441
  95. Licchetta L., Pippucci T., Baldassari S. et al. Sleep-related hypermotor epilepsy (SHE): Contribution of known genes in 103 patients // Seizure. 2020. V. 74. P. 60–64. https://doi.org/10.1016/j.seizure.2019.11.009
  96. Bar-Peled L., Chantranupong L., Cherniack A.D. et al. A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1 // Science. 2015. V. 340. № 6136. P. 1100–1106. https://doi.org/10.1126/science.1232044
  97. Dibbens L., de Vries B., Donatello S. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci // Nat. Genet. 2013. V. 45. P. 546–551. https://doi.org/10.1038/ng.2599
  98. Combi R., Dalprà L., Ferini-Strambi L., Tenchini, M.L. Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene // Ann. Neurol. 2005. V. 58. P. 899–904. https://doi.org/10.1002/ana.20660
  99. Chen Z., Wang C., Zhuo M. et al. Exome sequencing identified a novel missense mutation c.464G>A (p.G155D) in Ca2+-binding protein 4 (CABP4) in a Chinese pedigree with autosomal dominant nocturnal frontal lobe epilepsy // Oncotarget. 2017. V. 8. P. 78940–78947. https://doi.org/10.18632/oncotarget.20694
  100. Horrocks I.A., Nechay A., Stephenson J.B.P. et al. Anoxic-epileptic seizures: Observational study of epileptic seizures induced by syncopes // Arch. Dis. Child. 2005. V. 90. P. 1283–1287. https://doi.org/10.1136/adc.2005.075408
  101. Appleton R.E. Reflex anoxic seizures // BMJ. 1993. V. 24. № 307(6898). P. 214–215. https://doi.org/10.1136/bmj.307.6898.214
  102. Ranza E., Z’Graggen W., Lidgren M. et al. SCN8A heterozygous variants are associated with anoxic-epileptic seizures // Am. J. Med. Genet. Part A. 2020. V. 182A. P. 1209–1216. https://doi.org/10.1002/ajmg.a.61513
  103. Anand G., Collett-White F., Orsini A. et al. Autosomal dominant SCN8A mutation with an unusually mild phenotype // EJPN. 2016. V. 20. № 5. P. 761–765. https://doi.org/10.1016/j.ejpn.2016.04.015
  104. Gardella E., Becker F., Møller R.S. et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation // Ann. Neurol. 2016. V. 79. № 3. P. 428–436. https://doi.org/10.1002/ana.24580
  105. Cela E., Sjöström P.J. Novel optogenetic approaches in epilepsy research // Front. Neurosci. 2019. V. 13. https://doi.org/10.3389/fnins.2019.00947

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (314KB)

Copyright (c) 2023 Н.А. Дудко, С.С. Кунижева, Т.В. Андреева, И.Ю. Адрианова, Е.И. Рогаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies