Генетические факторы рефлекторных эпилепсий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рефлекторные эпилепсии относятся к сравнительно редким формам эпилепсий. Обычно рефлекторные эпилептические приступы являются частью комплексного фенотипа, что усложняет возможность выявления генетических факторов, лежащих в их основе. Многочисленные генетические исследования рефлекторных эпилепсий как на животных моделях, так и у человека позволяют предположить сложную гетерогенную природу этих неврологических расстройств. В данном обзоре рассматриваются основные результаты, полученные в последние годы при исследовании молекулярно-генетических факторов рефлекторной эпилепсии, в том числе освещаются новые данные о механизмах генетической регуляции при рефлекторных эпилепсиях, вызываемых такими триггерами как аудио- и видео-стимуляция, потребление пищи, чтение, контакт с водой и гипоксия. Представлены результаты, полученные в исследованиях на животных моделях и пациентах с использованием технологии секвенирования следующего поколения.

Об авторах

Н. А. Дудко

Центр генетики и наук о жизни, Научно-технологический университет “Сириус”; Институт общей генетики им. Н.И. Вавилова Российской академии наук

Автор, ответственный за переписку.
Email: dudko@rogaevlab.ru
Россия, 354340, Краснодарский край, пгт. Сириус; Россия, 119991, Москва

С. С. Кунижева

Центр генетики и наук о жизни, Научно-технологический университет “Сириус”; Институт общей генетики им. Н.И. Вавилова Российской академии наук; Центр генетики и генетических технологий, Московский государственный университет
им. М.В. Ломоносова

Email: dudko@rogaevlab.ru
Россия, 354340, Краснодарский край, пгт. Сириус; Россия, 119991, Москва; Россия, 119234, Москва

Т. В. Андреева

Центр генетики и наук о жизни, Научно-технологический университет “Сириус”; Институт общей генетики им. Н.И. Вавилова Российской академии наук; Центр генетики и генетических технологий, Московский государственный университет
им. М.В. Ломоносова

Email: dudko@rogaevlab.ru
Россия, 354340, Краснодарский край, пгт. Сириус; Россия, 119991, Москва; Россия, 119234, Москва

И. Ю. Адрианова

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Email: dudko@rogaevlab.ru
Россия, 119991, Москва

Е. И. Рогаев

Центр генетики и наук о жизни, Научно-технологический университет “Сириус”; Центр генетики и генетических технологий, Московский государственный университет
им. М.В. Ломоносова; Медицинская школа Чан Массачусетского университета, департамент психиатрии

Email: dudko@rogaevlab.ru
Россия, 354340, Краснодарский край, пгт. Сириус; Россия, 119234, Москва; США, 01545, МА, Шрусбери

Список литературы

  1. Fisher R.S., Acevedo C., Arzimanoglou A. et al. ILAE official report: A practical clinical definition of epilepsy // Epilepsia. 2014. V. 55. № 4. P. 475–482. https://doi.org/10.1111/epi.12550
  2. Dorothée G.A., Trenité K.-N. Provoked and reflex seizures: Surprising or common? // Epilepsia. 2012. V. 53. P. 105–113. https://doi.org/10.1111/j.1528-1167.2012.03620.x
  3. Okudan Z.V., Özkara Ç. Reflex epilepsy: Triggers and management strategies // Neuropsychiatr. Dis. Treat. 2018. V. 14. P. 327–337. https://doi.org/10.2147/NDT.S107669
  4. Koepp M.J., Caciagli L., Pressler R.M. et al. Reflex seizures, traits, and epilepsies: From physiology to pathology // Lancet Neurol. 2016. V. 15. № 1. P. 92–105. https://doi.org/10.1016/S1474-4422(15)00219-7
  5. Holmes G.L., Blair S., Eisenberg E. et al. Tooth-brushing-induced epilepsy // Epilepsia. 1982. V. 23. № 6. P.657–661. https://doi.org/10.1111/j.1528-1157.1982.tb05081.x
  6. Bickford R.G., Whelan J.L., Klass D.W., Corbin K.B. Reading epilepsy: Clinical and electroencephalographic studies of a new syndrome // Trans. Am. Neurol. Assoc. 1956. 81st Meeting. P. 100–102.
  7. Syed R. Hot water epilepsy: A rare form of reflex epilepsy // J. Neurosci. Rural Practice. 2010. V. 1. № 2. P. 99–101. https://doi.org/10.4103/0976-3147.71724
  8. Wei F., Yan L.M., Su T. et al. Ion channel genes and epilepsy: Functional alteration, pathogenic potential, and mechanism of epilepsy // Neurosci. Bull. 2017. V. 3. № 4. P. 455–477. https://doi.org/10.1007/s12264-017-0134-1
  9. Steinlein O.K. Genetics and epilepsy // Dialogues Clin. Neurosci. 2008. V. 10. № 1. P. 29–38. https://doi.org/10.31887/DCNS.2008.10.1/oksteinlein
  10. Garbuz D.G., Davletshin A.A., Litvinova S.A. et al. Rodent models of audiogenic epilepsy: Genetic aspects, advantages, current problems and perspectives // Biomedicines. 2022. V. 10. № 11. P. 29–34. https://doi.org/10.3390/biomedicines10112934
  11. Perucca P., Bahlo M., Berkovic S.F. The genetics of epilepsy // Annu. Rev. Genomics Hum. Genet. 2020. V. 21. P. 205–230. https://doi.org/10.1146/annurev-genom-120219-074937
  12. Wang J., Lin Z.J., Liu L. et al. Epilepsy-associated genes // Seizure. 2017. V. 44. P. 11–20. https://doi.org/10.1016/j.seizure.2016.11.030
  13. Thakran S., Guin D., Singh P. et al. Genetic landscape of common epilepsies: Advancing towards precision in treatment // Int. J. Mol. Sci. 2020. V. 21. № 20. P. 77–84. https://doi.org/10.3390/ijms21207784
  14. Scheffer I.E., Berkovic S., Capovilla G. et al. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology // Epilepsia. 2017. V. 58. № 4. P. 512–521. https://doi.org/10.1111/epi.13709
  15. Chen Z., Brodie M.J., Liew D., Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study // JAMA Neurol. 2018. V. 75. № 3. P. 279–286. https://doi.org/10.1001/jamaneurol.2017.3949
  16. Avanzini G. Musicogenic seizures // Ann. of the N. Y. Acad. of Sci. 2003. V. 999. № 1. P. 95–102. https://doi.org/10.1196/annals.1284.008
  17. Critchley M. Musicogenic epilepsy // Brain. 1937. P. 6013–6027.
  18. Sanchez-Carpintero R., Patiño-Garcia A., Urrestarazu E. Musicogenic seizures in Dravet syndrome // Dev. Med. Child Neurol. 2013. V. 55. P. 668–670. https://doi.org/10.1111/dmcn.12138
  19. Ding J., Li X., Tian H., Wang L. et al. SCN1A mutation-beyond Dravet syndrome: A systematic review and narrative synthesis // Front. Neurol. 2021 V. 12. P. 743–726. https://doi.org/10.3389/fneur.2021.743726
  20. Michelucci R., Gardella E., De Haan G.J. et al. Telephone-induced seizures: A new type of reflex epilepsy // Epilepsia. 2004. V. 45. P. 280–283. https://doi.org/10.1111/j.0013-9580.2004.39703.x
  21. Michelucci R., Mecarelli O., Bovo G. et al. A de novo LGI1 mutation causing idiopathic partial epilepsy with telephone-induced seizures // Neurology. 2007. V. 68. № 24. P. 2150–2151. https://doi.org/10.1212/01.wnl.0000264932.44153.3c
  22. Brodtkorb E., Michler R.P., Gu W., Steinlein O.K. Speech-induced aphasic seizures in epilepsy caused by lgi1 mutation // Epilepsia. 2005. V. 46. P. 963–966. https://doi.org/10.1111/j.1528-1167.2005.47104.x
  23. Nobile C., Michelucci R., Andreazza S. et al. LGI1 mutations in autosomal dominant and sporadic lateral temporal epilepsy // Hum. Mutat. 2009. V. 30. P. 530–536. https://doi.org/10.1002/humu.20925
  24. Chabrol E., Navarro V., Provenzano G. et al. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice // Brain. 2010. V. 133. P. 2749–2762. https://doi.org/10.1093/brain/awq171
  25. Poletaeva I.I., Surina N.M., Kostina Z.A. et al. The Krushinsky-Molodkina rat strain: The study of audiogenic epilepsy for 65 years // Epilepsy Behav. 2017. V. 71. P. 130–141. https://doi.org/10.1016/j.yebeh.2015.04.072
  26. Dailey J.W., Reigel C.E., Mishra P.K., Jobe P.C. Neurobiology of seizure predisposition in the genetically epilepsy-prone rat // Epilepsy Research. 1989. V. 3. № 1. P. 3–17. https://doi.org/10.1016/0920-1211(89)90063-6
  27. Garcia-Cairasco N., Umeoka E.H.L., Cortes de Oliveira J.A. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives // Epilepsy & Behavior. 2017. V. 71. Pt. B. P. 250–273. https://doi.org/10.1016/j.yebeh.2017.04.001
  28. Garcia-Gomes M.S.A., Zanatto D.A., Galvis-Alonso O.Y. et al. Behavioral and neurochemical characterization of the spontaneous mutation tremor, a new mouse model of audiogenic seizures // Epilepsy Behav. 2020. V. 105. https://doi.org/10.1016/j.yebeh.2020.106945
  29. Sánchez-Benito D., Hyppolito M.A., Alvarez-Morujo A.J. et al. Morphological and molecular correlates of altered hearing sensitivity in the genetically audiogenic seizure-prone hamster GASH/Sal // Hear. Res. 2020. V. 392. https://doi.org/10.1016/j.heares.2020.107973
  30. López-López D., Gómez-Nieto R., Herrero-Turrión M.J. et al. Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures // Epilepsy Behav. 2017. V. 71. Pt. B. P. 226–237. https://doi.org/10.1016/j.yebeh.2015.12.020
  31. Díaz-Casado E., Gómez-Nieto R., de Pereda J.M. et al. Analysis of gene variants in the GASH/Sal model of epilepsy // PLoS One. 2020. V. 15. № 3. https://doi.org/10.1371/journal.pone.0229953
  32. Chernigovskaya E.V., Korotkov A.A., Dorofeeva N.A. et al. Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling // Epilepsy Behav. 2019. V. 99. https://doi.org/10.1016/j.yebeh.2019.106494
  33. Chuvakova L.N., Funikov S.Yu., Rezvykh A.P. et al. Transkriptome of the Krushinsky-Molodkina audiogenic rat strain and identification of possible audiogenic epilepsy-associated genes // Front. Mol. Neurosci. 2022. V. 14. https://doi.org/10.3389/fnmol.2021.738930
  34. Bertocchi I., Eltokhi A., Rozov A. et al. Voltage-independent GluN2A-type NMDA receptor Ca2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice // Commun. Biol. 2021. V. 4. № 59. https://doi.org/10.1038/s42003-020-01538-4
  35. Gonzalez D., Tomasek M., Hays S. et al. Audiogenic seizures in the Fmr1 Knock-Out mouse are induced by Fmr1 deletion in subcortical, VGlut2-expressing excitatory neurons and require deletion in the inferior colliculus // J Neurosci. 2019. V. 39. № 49. P. 9852–9863. https://doi.org/10.1523/JNEUROSCI.0886-19.2019
  36. Skradski S.L., Clark A.M., Jiang H. et al. A novel gene causing a mendelian audiogenic mouse epilepsy // Neuron. 2001. V. 31. P. 537–544. https://doi.org/10.1016/s0896-6273(01)00397-X
  37. Charizopoulou N., Lell A., Schraders M. et al. Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human // Nat. Commun. 2011. V. 2. P. 201. https://doi.org/10.1038/ncomms1200
  38. Petrova N.V., Marakhonov A.V., Balinova N.V. et al. Genetic variant c.245A>G (p.Asn82Ser) in GIPC3 gene is a frequent cause of hereditary nonsyndromic sensorineural hearing loss in Chuvash population // Genes. 2021. V. 12. https://doi.org/10.3390/genes12060820
  39. Garcia-Gomes M.S.A., Yamamoto P.K., Massironi S.M.G. et al. Alteration of hippocampal Egr3, GABA A receptors, Il-1β, Il6 and Ccl3 expression in audiogenic tremor mice after seizure // Epilepsy Behav. 2022. V. 137. (Pt. A). https://doi.org/10.1016/j.yebeh.2022.108962
  40. Padmanaban V., Inati S., Ksendzovsky A., Zaghloul K. Clinical advances in photosensitive epilepsy // Brain Research. 2019. V. 1703. P. 18–25. https://doi.org/10.1016/j.brainres.2018.07.025
  41. Tauer U., Lorenz S., Lenzen K.P. et al. Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy // Ann. Neurol. 2005. V. 57. P. 866–873. https://doi.org/10.1002/ana.20500
  42. Stephani U., Tauer U., Koeleman B. et al. Genetics of photosensitivity (photoparoxysmal response): A review // Epilepsia. 2004. V. 4. P. 19–23. https://doi.org/10.1111/j.0013-9580.2004.451008.x
  43. Manis A.M., Palygin O., Isaeva E. et al. KCNJ16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat // JCI Insight. 2021. V. 6. № 1. https://doi.org/10.1172/jci.insight.143251
  44. Pinto D., Westland B., de Haan C.-J. et al. Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response: Evidence for linkage on chromosomes 7q32 and 16p13 // Hum. Mol. Genet. 2005. V. 14. № 1. P. 171–178. https://doi.org/10.1093/hmg/ddi018
  45. Gupta M., Polinsky M., Senephansiri H. et al. Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency // Neurobiol. Dis. 2004. V. 16. № 3. P. 556–562. https://doi.org/10.1016/j.nbd.2004.04.008
  46. Dervent A., Gibson K.M., Pearl P.L. et al. Photosensitive absence epilepsy with myoclonias and heterozygosity for succinic semialdehyde dehydrogenase (SSADH) deficiency // Clin. Neurophysiol. 2004. V. 115. № 6. P. 1417–1422. https://doi.org/10.1016/j.clinph.2004.01.002
  47. Liao M., Kundap U., Rosch R.E. et al. Targeted knockout of GABA-A receptor gamma 2 subunit provokes transient light-induced reflex seizures in zebrafish larvae // Dis. Model. Mech. 2019. V. 12. № 11. P. 1–11. https://doi.org/10.1242/dmm.040782
  48. Menon R.N., Nambiar P.N., Keni R.R. et al. Drug-resistant “Non-Lesional” visual sensitive epilepsies of childhood – electroclinical phenotype-genotype associations // Neurol. India. 2021. V. 69. № 6. P. 1701–1705. https://doi.org/10.4103/0028-3886.333508
  49. Galizia E.C., Myers C.T., Leu C. et al. CHD2 variants are a risk factor for photosensitivity in epilepsy // Brain. 2015. V. 138. № 5. P. 198–207. https://doi.org/10.1093/brain/awv052
  50. Dorothée G.A., Trenité K.-N., Volkers L. et al. Clinical and genetic analysis of a family with two rare reflex epilepsies // Seizure. 2015. V. 29. P. 90–96. https://doi.org/10.1016/j.seizure.2015.03.020
  51. Crippa M., Malatesta P., Bonati M.T. et al. A familial t(4;8) translocation segregates with epilepsy and migraine with aura // Ann. Clin. Transl. Neurol. 2020. V. 7. № 5. P. 855–859. https://doi.org/10.1002/acn3.51040
  52. Shimizu A., Asakawa S., Sasaki T. et al. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: A candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3–q24.1 // Biochem. Biophys. Res. Commun. 2003. V. 309. № 1. P. 143–154. https://doi.org/10.1016/S0006-291X(03)01555-9
  53. Sadleir L.G., de Valles-Ibáñez G., King C. et al. Inherited RORB pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy // Epilepsia. 2020. V. 61. P. e23–e29. https://doi.org/10.1111/epi.16475
  54. Liu H., Aramaki M., Fu Y., Forrest D. Retinoid-related orphan receptor β and transcriptional control of neuronal differentiation // Curr. Top. Dev. Biol. 2017. V. 125. P. 227–255. https://doi.org/10.1016/bs.ctdb.2016.11.009
  55. Lo Barco T., Kaminska A., Solazzi R. et al. SYNGAP1-DEE: A visual sensitive epilepsy // Clin. Neurophysiol. 2021. V. 132. № 4. P. 841–850. https://doi.org/10.1016/j.clinph.2021.01.014
  56. Douaud M., Feve K., Pituello F. et al. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model // PLoS One. 2011. V. 6. № 10. https://doi.org/10.1371/journal.pone.0026932
  57. Calame D.G., Herman I., Riviello J.J. A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus // Epilepsy Behav. Rep. 2021. V. 7. № 15. https://doi.org/10.1016/j.ebr.2020.100425
  58. Wang D., Zhou Q., Ren L., Lin Y. et al. Levetiracetam-induced a new seizure type in a girl with a novel SV2A gene mutation // Clin. Neurol. Neurosurg. 2019. V. 181. P. 64–66. https://doi.org/10.1016/j.clineuro.2019.03.020
  59. Serajee F.J., Huq A.M. Homozygous mutation in synaptic vesicle glycoprotein 2A gene results in intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation // Pediatr. Neurol. 2015. V. 52. V. 6. P. 642–646. https://doi.org/10.1016/j.pediatrneurol.2015.02.011
  60. Van Vliet E.A., Aronica E., Redeker S. et al. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy // Epilepsia. 2009. V. 50. № 3. P. 422–433. https://doi.org/10.1111/j.1528-1167.2008.01727.x
  61. Von Klopmann T., Ahonen S., Espadas-Santiuste I. et al. Canine Lafora disease: An unstable repeat expansion disorder // Life (Basel). 2021. V. 11. № 7. https://doi.org/10.3390/life11070689
  62. Araya N., Takahashi Y., Shimono M. et al. A recurrent homozygous NHLRC1 variant in siblings with Lafora disease // Hum. Genome. Var. 2018. V. 5. P. 16. https://doi.org/10.1038/s41439-018-0015-9
  63. Girges C., Vijiaratnam N., Wirth T. et al. Seizures triggered by eating – a rare form of reflex epilepsy: A systematic review // Seizure. 2020. V. 83. P. 21–31. https://doi.org/10.1016/j.seizure.2020.09.013
  64. Seneviratne U., Seetha T., Pathirana R., Rajapakse P. High prevalence of eating epilepsy in Sri Lanka // Seizure. 2003. V. 12. № 8. P. 604–605. https://doi.org/10.1016/s1059-1311(03)00110-9
  65. Vercellino F., Siri L., Brisca G. et al. Symptomatic eating epilepsy: Two novel pediatric patients and review of literature // Ital. J. Pediatr. 2021. V. 47. № 1. P. 137. https://doi.org/10.1186/s13052-021-01051-2
  66. Suls A., Jaehn J.A., Kecskés A. et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome // Am. J. Hum. Genet. 2013. V. 93. № 5. P. 967–975. https://doi.org/10.1016/j.ajhg.2013.09.017
  67. Rahman S., Copeland W.C. POLG-related disorders and their neurological manifestations // Nat. Rev. Neurol. 2019. V. 15. № 1. P. 40–52. https://doi.org/10.1038/s41582-018-0101-0
  68. Von Stülpnagel C., Hartlieb T., Borggräfe I. et al. Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: Review of literature and report of 8 cases // Seizure. 2019. V. 65. P. 131–137. https://doi.org/10.1016/j.seizure.2018.12.020
  69. Agarwal M., Johnston M.V., Stafstrom C.E. SYNGAP1 mutations: Clinical, genetic, and pathophysiological features // Int. J. Dev. Neurosci. 2019. V. 78. P. 65–76. https://doi.org/10.1016/j.ijdevneu.2019.08.003
  70. De Palma L., Boniver C., Cassina M. et al. Eating-induced epileptic spasms in a boy with MECP2 duplication syndrome: Insights into pathogenesis of genetic epilepsies // Epileptic Disorders. 2012. V. 14. № 4. P. 414–417. https://doi.org/10.1684/epd.2012.0546
  71. Ramocki M.B., Peters S.U., Tavyev Y.J. et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome // Ann. Neurol. 2009. V. 66. № 6. P. 771–782. https://doi.org/10.1002/ana.21715
  72. Martínez A.R., Colmenero M.I.A., Pereira A.G. et al. Reflex seizures in Rett syndrome // Epileptic Disord. 2011. V. 13. № 4. P. 389–393. https://doi.org/10.1684/epd.2011.0475
  73. Accogli A., Wiegand G., Scala M. et al. Clinical and genetic features in patients with reflex bathing epilepsy // Neurology. 2021. V. 97. № 6. P. 577–586. https://doi.org/10.1212/WNL.0000000000012298
  74. Satishchandra P. Hot-water epilepsy // Epilepsia. 2003. V. 44. P. 29–32. https://doi.org/10.1046/j.1528-1157.44.s.1.14.x
  75. Krygier M., Zawadzka M., Sawicka A., Mazurkiewicz-Bełdzińska M. Reflex seizures in rare monogenic epilepsies // Seizure. 2022. V. 97. P. 32–34. https://doi.org/10.1016/j.seizure.2022.03.004
  76. Epi4K Consortium. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies // Am. J. Hum. Genet. 2016. V. 99. № 2. P. 287–298. https://doi.org/10.1016/j.ajhg.2016.06.003
  77. Alehabib E., Esmaeilizadeh Z., Ranji-Burachaloo S. et al. Clinical and molecular spectrum of P/Q type calcium channel Cav2.1 in epileptic patients // Orphanet J. Rare Dis. 2021. V. 16. P. 461. https://doi.org/10.1186/s13023-021-02101-y
  78. Danti F.R., Galosi S., Romani M. et al. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome // Neurol. Genet. 2017. V. 3. № 2. https://doi.org/10.1212/NXG.0000000000000143
  79. Mattioli F., Hayot G., Drouot N. et al. De novo frameshift variants in the neuronal splicing factor NOVA2 result in a common C-terminal extension and cause a severe form of neurodevelopmental disorder // Am. J. Hum. Genet. 2020. V. 106. № 4. P. 438–452. https://doi.org/10.1016/j.ajhg.2020.02.013
  80. Peikes T., Hartley J., Mhanni A. et al. Reflex seizures in a patient with CDKL5 deficiency disorder // Can. J. Neurol Sci. 2019. V. 46. № 4. P. 482–485. https://doi.org/10.1017/cjn.2019.29
  81. Ullal G.R., Satischandra P., Shankar S.K. Hyperthermic seizures: An animal model for hot water epilepsy // Seizure. 1996. V. 5. № 3. P. 221–228. https://doi.org/10.1016/s1059-1311(96)80040-9
  82. Fukuda M., Morimoto T., Nagao H., Kida K. Clinical study of epilepsy with severe febrile seizures and seizures induced by hot water bath // Brain Dev. 1997. V. 19. № 3. P. 212–216. https://doi.org/10.1016/s0387-7604(96)00564-5
  83. Ratnapriya R., Satishchandra P., Kumar S.D. et al. A locus for autosomal dominant reflex epilepsy precipitated by hot water maps at chromosome 10q21.3-q22.3 // Hum. Genet. 2009. V. 125 P. 541–549. https://doi.org/10.1007/s00439-009-0648-3
  84. Ratnapriya R., Satishchandra P., Dilip S. et al. Familial autosomal dominant reflex epilepsy triggered by hot water maps to 4q24-q28 // Hum. Genet. 2009. V. 126. № 5. P. 677–683. https://doi.org/10.1007/s00439-009-0718-6
  85. Zhou Q., Wang J., Xia L., Li R., et al. SYN1 mutation causes X-linked toothbrushing epilepsy in a Chinese family // Front. Neurol. 2021. V. 20. № 12. 736977. https://doi.org/10.3389/fneur.2021.736977
  86. Reijnders M.R.F., Janowski R., Alvi M. et al. PURA syndrome: Clinical delineation and genotypephenotype study in 32 individuals with review of published literature // JMG. 2017. V. 55. № 2. P. 1–10. https://doi.org/10.1136/jmedgenet-2017-104946
  87. Solazzi R., Fiorini E., Parrini E. et al. Early-onset bradykinetic rigid syndrome and reflex seizures in a child with PURA syndrome // Epileptic Disord. 2021. V. 23. № 5. P. 745–748. https://doi.org/10.1684/epd.2021.1328
  88. Menghi V., Bissuli F., Tinupir F., Nobili L. Sleep-related hypermotor epilepsy: Prevalence, impact and management strategies // Nat. and Sci. of Sleep. 2018. V. 10. P. 317–326. https://doi.org/10.2147/NSS.S152624
  89. Tinuper P., Bisulli F., Cross J.H. et al. Definition and diagnostic criteria of sleep-related hypermotor epilepsy // Neurology. 2016. V. 86. № 19. P. 1834–1842. https://doi.org/10.1212/WNL.0000000000002666
  90. Steinlein O.K., Mulley J.C., Propping P. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha-4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy // Nat. Genet. 1995. V. 11. № 2. P. 201–203. https://doi.org/10.1038/ng1095-201
  91. Villa C., Colombo G., Meneghini S. et al. CHRNA2 and nocturnal frontal lobe epilepsy: Identification and characterization of a novel loss of function mutation // Front. Mol. Neurosci. 2019. V. 12. 17. https://doi.org/10.3389/fnmol.2019.00017
  92. Brodtkorb E., Myren-Svelstad S., Knudsen-Baas K.M., et al. Precision treatment with nicotine in autosomal dominant sleep-related hypermotor epilepsy (ADSHE): An observational study of clinical outcome and serum cotinine levels in 17 patients // Epilepsy Res. 2021. V. 178. https://doi.org/10.1016/j.eplepsyres.2021.106792
  93. Heron S.E., Smith K.R., Bahlo M. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy // Nat. Genet. 2012. V. 44. № 11. P. 1188–1190. https://doi.org/10.1038/ng.2440
  94. Barcia G., Fleming M.R., Deligniere A. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy // Nat. Genet. 2012. V. 44. № 11. P. 1255–1259. https://doi.org/10.1038/ng.2441
  95. Licchetta L., Pippucci T., Baldassari S. et al. Sleep-related hypermotor epilepsy (SHE): Contribution of known genes in 103 patients // Seizure. 2020. V. 74. P. 60–64. https://doi.org/10.1016/j.seizure.2019.11.009
  96. Bar-Peled L., Chantranupong L., Cherniack A.D. et al. A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1 // Science. 2015. V. 340. № 6136. P. 1100–1106. https://doi.org/10.1126/science.1232044
  97. Dibbens L., de Vries B., Donatello S. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci // Nat. Genet. 2013. V. 45. P. 546–551. https://doi.org/10.1038/ng.2599
  98. Combi R., Dalprà L., Ferini-Strambi L., Tenchini, M.L. Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene // Ann. Neurol. 2005. V. 58. P. 899–904. https://doi.org/10.1002/ana.20660
  99. Chen Z., Wang C., Zhuo M. et al. Exome sequencing identified a novel missense mutation c.464G>A (p.G155D) in Ca2+-binding protein 4 (CABP4) in a Chinese pedigree with autosomal dominant nocturnal frontal lobe epilepsy // Oncotarget. 2017. V. 8. P. 78940–78947. https://doi.org/10.18632/oncotarget.20694
  100. Horrocks I.A., Nechay A., Stephenson J.B.P. et al. Anoxic-epileptic seizures: Observational study of epileptic seizures induced by syncopes // Arch. Dis. Child. 2005. V. 90. P. 1283–1287. https://doi.org/10.1136/adc.2005.075408
  101. Appleton R.E. Reflex anoxic seizures // BMJ. 1993. V. 24. № 307(6898). P. 214–215. https://doi.org/10.1136/bmj.307.6898.214
  102. Ranza E., Z’Graggen W., Lidgren M. et al. SCN8A heterozygous variants are associated with anoxic-epileptic seizures // Am. J. Med. Genet. Part A. 2020. V. 182A. P. 1209–1216. https://doi.org/10.1002/ajmg.a.61513
  103. Anand G., Collett-White F., Orsini A. et al. Autosomal dominant SCN8A mutation with an unusually mild phenotype // EJPN. 2016. V. 20. № 5. P. 761–765. https://doi.org/10.1016/j.ejpn.2016.04.015
  104. Gardella E., Becker F., Møller R.S. et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation // Ann. Neurol. 2016. V. 79. № 3. P. 428–436. https://doi.org/10.1002/ana.24580
  105. Cela E., Sjöström P.J. Novel optogenetic approaches in epilepsy research // Front. Neurosci. 2019. V. 13. https://doi.org/10.3389/fnins.2019.00947

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (314KB)

© Н.А. Дудко, С.С. Кунижева, Т.В. Андреева, И.Ю. Адрианова, Е.И. Рогаев, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах