The CRP Gene’s Role in the Relations between Childhood Adversity and History of Suicide Attempts in Schizophrenia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Research suggests that, in contrast to circulating C-reactive protein (CRP), genetic variants conferring higher CRP levels have protective effects against schizophrenia and moderate influences of season of birth on the development of the disease. This study aimed to explore whether the CRP gene also moderates the relations between childhood adversity and clinical characteristics of schizophrenia. The relations between childhood adversity, genotypes at rs2794521within the CRP locus, syndromes measured as five factors and two negative subfactors of the Positive and Negative Syndrome Scale, and history of suicide attempts were analyzed in 921 schizophrenia patients using analyses of covariances, Pearson’s chi-squared test, and logistic regression. A significant effect of genotype on suicide attempts in patients exposed to childhood adversity was found. The result suggests a moderating role of genetic determinants of inflammation in translating early life psychological stress effects into risk of suicide attempts in schizophrenia.

About the authors

M. V. Alfimova

Mental Health Research Center

Author for correspondence.
Email: m.alfimova@gmail.com
Russia, 115522, Moscow

T. V. Lezheiko

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

M. V. Gabaeva

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

V. V. Plakunova

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

V. A. Mikhailova

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

V. G. Kaleda

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

V. E. Golimbet

Mental Health Research Center

Email: m.alfimova@gmail.com
Russia, 115522, Moscow

References

  1. The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T.R., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // medRxiv. 2020. https://doi.org/10.1101/2020.09.12.20192922
  2. Radua J., Ramella-Cravaro V., Ioannidis J.P.A. et al. What causes psychosis? An umbrella review of risk and protective factors // World Psychiatry. 2018. V. 17. № 1. P. 49–66. https://doi.org/10.1002/wps.20490
  3. Comer A.L., Carrier M., Tremblay M.È., Cruz-Martín A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation // Front. Cell. Neurosci. 2020. V. 14. e274. https://doi.org/10.3389/fncel.2020.00274
  4. Singh B., Chaudhuri T.K. Role of C-reactive protein in schizophrenia: An overview // Psychiatry Res. 2014. V. 216. P. 277–285. https://doi.org/10.1016/j.psychres.2014.02.004
  5. Fond G., Lançon C., Auquier P., Boyer L. C-reactive protein as a peripheral biomarker in schizophrenia. An updated systematic review // Front. Psychiatry. 2018. V. 9. e392. https://doi.org/10.3389/fpsyt.2018.00392
  6. Miola A., Dal Porto V., Tadmor T. et al. Increased C-reactive protein concentration and suicidal behavior in people with psychiatric disorders: A systematic review and meta-analysis // Acta Psychiatr. Scand. 2021. V. 144. P. 537–552. https://doi.org/10.1111/acps.13351
  7. Ligthart S., Vaez A., Võsa U. et al. Genome analyses of >200 000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders // Am. J. Hum. Genet. 2018. V. 103. P. 691–706. https://doi.org/10.1016/j.ajhg.2018.09.009
  8. Lin B.D., Alkema A., Peters T. et al. Assessing causal links between metabolic traits, inflammation and schizophrenia: a univariable and multivariable, bidirectional Mendelian-randomization study // Int. J. Epidemiol. 2019. V. 48. P. 1505–1514. https://doi.org/10.1093/ije/dyz176
  9. Alfimova M.V., Lezheiko T.V., Smirnova S.V. et al. Effect of the C-reactive protein gene on risk and clinical characteristics of schizophrenia in winter-born individuals // Eur. Neuropsychopharmacol. 2020. V. 35. P. 81–88. https://doi.org/10.1016/j.euroneuro.2020.03.014
  10. Popovic D., Schmitt A., Kaurani L. et al. Childhood trauma in schizophrenia: Current findings and research perspectives // Front. Neurosci. 2019. V. 13. e274. https://doi.org/10.3389/fnins.2019.00274
  11. Sahle B.W., Reavley N.J., Li W. et al. The association between adverse childhood experiences and common mental disorders and suicidality: An umbrella review of systematic reviews and meta-analyses // Eur. Child Adolesc. Psychiatry. 2021. V. 31. P. 1489–1499. https://doi.org/10.1007/s00787-021-01745-2
  12. Baumeister D., Akhtar R., Ciufolini S. et al. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumor necrosis factor-α // Mol. Psychiatry. 2016. V. 21. P. 642–649. https://doi.org/10.1038/mp.2015.67
  13. The 1000 Genomes Project Consortium, Auton A., Brooks L.D. et al. A global reference for human genetic variation // Nature. 2015. V. 526. № 7571. P. 68–74. https://doi.org/10.1038/nature15393
  14. Kotlęga D., Białecka M., Kurzawski M. et al. Risk factors of stroke and 717A>G (rs2794521) CRP gene polymorphism among stroke patients in West Pomerania province of Poland // Neurol. Neurochir. Pol. 2014. V. 48. P. 30–34. https://doi.org/10.1016/j.pjnns.2013.12.001
  15. Wang L., Lu X., Li Y. et al. Functional analysis of the C‑reactive protein (CRP) gene –717A>G polymorphism associated with coronary heart disease // BMC Med. Genet. 2009. V. 10. e73. https://doi.org/10.1186/1471-2350-10-73
  16. Lim K., Peh O.H., Yang Z. et al. Large-scale evaluation of the positive and negative syndrome scale (PANSS) symptom architecture in schizophrenia // Asian J. Psychiatr. 2021. V. 62. e102732. https://doi.org/10.1016/j.ajp.2021.102732
  17. Afifi T.O., Salmon S., Garcés I. et al. Confirmatory factor analysis of adverse childhood experiences (ACEs) among a community-based sample of parents and adolescents // BMC Pediatrics. 2020. V. 20. e178. https://doi.org/10.1186/s12887-020-02063-3
  18. Kay S.R., Fiszbein A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia // Schizophr. Bull. 1987. V. 13. P. 261–276. https://doi.org/10.1093/schbul/13.2.261
  19. JASP Team. JASP (Version 0.16)(Computer software). 2021. https://jasp-stats.org/ [accessed 1 February 2022].
  20. Russell A.E., Ford T., Gunnell D. et al. Investigating evidence for a causal association between inflammation and self-harm: A multivariable mendelian randomisation study // Brain Behav. Immun. 2020. V. 89. P. 43–50. https://doi.org/10.1016/j.bbi.2020.05.065
  21. Erlangsen A., Appadurai V., Wang Y. et al. Genetics of suicide attempts in individuals with and without mental disorders: A population-based genome-wide association study // Mol. Psychiatry. 2020. V. 25. P. 2410–2421. https://doi.org/10.1038/s41380-018-0218-y
  22. Russell A.E., Heron J., Gunnell D. et al. Pathways between early-life adversity and adolescent self-harm: The mediating role of inflammation in the avon longitudinal study of parents and children // J. Child. Psychol. Psychiatry. 2019. V. 60. P. 1094–1103. https://doi.org/10.1111/jcpp.13100

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (28KB)

Copyright (c) 2023 М.В. Алфимова, Т.В. Лежейко, М.В. Габаева, В.В. Плакунова, В.А. Михайлова, В.Г. Каледа, В.Е. Голимбет

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies