The Role of rs2238296 of the Mitochondrial DNA Polymerase Gamma Gene in Combination with Polymorphic Variants of Antioxidant Defense Genes in the Development of Postinfarction Left Ventricular Aneurysm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studied the relationship of the polymorphic variant of the mitochondrial DNA polymerase gamma gene (POLG rs2238296) in combination with single-nucleotide polymorphic variants of the genes of the antioxidant system of the body (mitochondrial transcription factor A (TFAM rs1937), superoxide dismutase (SOD2 rs4880), glutathione peroxidase (GPX1 rs1050450), catalase (CAT rs1001179), paraoxonase 1 (PON1 rs854560) and NADP-H oxidase (CYBA rs4673)) with features of postinfarction remodeling of the left ventricle (LV). One hundred and fifty-three patients with coronary heart disease (137 men and 16 women) aged 56 (50; 60.5) years were examined. Genotyping was carried out using a polymerase chain reaction followed by analysis of the polymorphism of the lengths of restriction fragments. No significant difference was found in the SOD2, GPX1, CAT, PON1, TFAM genes in the studied groups. Significant differences were found with respect to the POLG and CYBA genes: the CC rs2238296 genotype of the POLG gene was found in every third patient with LV aneurysm (30.3%), where as in the group without aneurysm – only in every eighth case (12.3%, p = 0.006). The CC rs4673 genotype of the CYBA gene was found in every second patient with an aneurysm (51.8%) and in 32% without LV aneurysm (p = 0.01). Patients with a combination of CC (POLG) and CC (CYBA) genotypes were represented exclusively by younger men, who were characterized by a less burdened comorbid background, in comparison with patients with a different genotype of these genes. At the same time, the LV ejection fraction in such patients was significantly lower (40 (27; 52) and 50 (40; 61), p = = 0.006), and the development of LV aneurysm was recorded in 73% of cases.

About the authors

E. A. Kuzheleva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Author for correspondence.
Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

A. A. Garganeeva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

O. V. Tukish

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

A. K. Nesova

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

M. V. Golubenko

Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center
of the Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634050, Tomsk

S. L. Andreev

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

V. M. Shipulin

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-tomsk.ru
Russia, 634012, Tomsk

References

  1. Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать // Рос. кардиол. журн. 2016. № 8. С. 7–13. https://doi.org/10.15829/1560-4071-2016-8-7-13
  2. Гарганеева А.А., Кужелева Е.А., Кузьмичкина М.А. и др. Изменения характеристик и лечения больных с хронической сердечной недостаточностью, поступивших в кардиологический стационар в 2002 и 2016 годах // Кардиология. 2018. Т. 58. № 12S. С. 18–26. https://doi.org/10.18087/cardio.2605
  3. Cohn J.N., Ferrari R., Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling // J. Am. College Cardiology. 2000. V. 35. № 3. P. 569–582. https://doi.org/10.1016/s0735-1097(99)00630-0
  4. Российское кардиологическое общество, Ассоциация сердечно-сосудистых хирургов России. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020 // Рос. кардиол. журн. 2020. Т. 25. № 11. С. 4103. https://doi.org/10.15829/1560-4071-2020-4103
  5. Гарганеева А.А., Округин С.А., Борель К.Н. и др. Инфаркт миокарда на рубеже двух столетий: демографические и социальные тенденции // Клинич. медицина. 2016. Т. 94. № 6. С. 463–467. https://doi.org/10.18821/0023-2149-2016-94-6-463-467
  6. Li Y., Liu X. Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion // J. Cellular Physiology. 2018. V. 233. № 8. P. 5589–5597. https://doi.org/10.1002/jcp.26522
  7. Doğan A., Özşensoy Y., Türker F.S. MnSOD, CAT and GPx-3 genetic polymorphisms in coronary artery disease // Mol. Biology Reports. 2019. V. 46. № 1. P. 841–845. https://doi.org/10.1007/s11033-018-4539-3
  8. Жейкова Т.В., Голубенко М.В., Буйкин С.В. и др. Ассоциация полиморфизма Thr12Ser гена митохондриального фактора транскрипции А TFAM с ишемической болезнью сердца // Бюл. сиб. медицины. 2012. Т. 11. № 6. С. 47–50. https://doi.org/10.20538/1682-0363-2012-6-47-50
  9. Жейкова Т.В., Голубенко М.В., Буйкин С.В. и др. Анализ ассоциаций полиморфного локуса 242C > T гена субъединицы p22phox НАДФН-оксидазы (CYBA) с долгожительством в российской популяции // Генетика. 2013. Т. 49. № 3. С. 410–414.
  10. Neumann F.J., Sousa-Uva M., Ahlsson A. et al. ESC/EACTS guidelines on myocardial revascularization // Rossijskij kardiol. zhurnal. 2019. № 8. P. 151–226. https://doi.org/10.15829/1560-4071-2019-8-151-226
  11. Anderson A.P., Luo X., Russell W., Yin Y.W. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity // Nucl. Acids Res. 2020. № 1. P. 817–829. https://doi.org/10.1093/nar/gkz1018
  12. Kujoth G.C., Hiona A., Pugh T.D. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging // Science. 2005. V. 309. № 5733. P. 481–484. https://doi.org/10.1126/science.1112125
  13. Zhang J., Xu S., Xu Y. et al. Relation of mitochondrial DNA copy number in peripheral blood to postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting // Am. J. Cardiology. 2017. V. 119. № 3. P. 473–477. https://doi.org/10.1016/j.amjcard.2016.10.017
  14. Levitsky S., Laurikka J., Stewart R.D. et al. Mitochondrial DNA deletions in coronary artery bypass grafting patients // Eur. J. Cardio-Thoracic Surgery. 2003. V. 24. № 5. P. 777–784. https://doi.org/10.1016/S1010-7940(03)00501-3
  15. Formichi P., Radi E., Branca C. et al. Oxidative stress-induced apoptosis in peripheral blood lymphocytes from patients with POLG-related disorders // J. Neurological Sciences. 2016. № 368. P. 359–368. https://doi.org/10.1016/j.jns.2016.07.047
  16. The Genotype-Tissue Expression (GTEx) project. Accessed September 6, 2021. https://www.gtexportal.org/home/snp/rs2238296
  17. Буйкин С.В., Голубенко М.В., Погребенкова В.В. и др. Ген POLG митохондриальной γ-полимеразы: частота и анализ сцепления двух единичных нуклеотидных замен (SNP) в популяциях народов Сибири // Мол. биология. 2006. Т. 40. № 6. C. 1081–1083.
  18. Racis M., Sobiczewski W., Stanisławska-Sachadyn A. et al. NADPH oxidase gene polymorphism is associated with mortality and cardiovascular events in 7-year follow-up // J. Clin. Medicine. 2020. V. 9. № 5. P. 1475. https://doi.org/10.3390/jcm9051475

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (221KB)

Copyright (c) 2023 Е.А. Кужелева, А.А. Гарганеева, О.В. Тукиш, А.К. Несова, М.В. Голубенко, С.Л. Андреев, В.М. Шипулин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies