Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.

Авторлар туралы

A. Ilina

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: ekrez@yandex.ru
Ресей, Moscow; Moscow

I. Krichever

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics; Columbia University

Хат алмасуға жауапты Автор.
Email: krichev@math.columbia.edu
Ресей, Moscow; Moscow; New York

N. Nekrasov

Skolkovo Institute for Science and Technology; Simons Center For Geometry And Physics

Хат алмасуға жауапты Автор.
Email: nikitastring@gmail.com
Ресей, Moscow; Stony Brook

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019