Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.

作者简介

A. Ilina

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: ekrez@yandex.ru
俄罗斯联邦, Moscow; Moscow

I. Krichever

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics; Columbia University

编辑信件的主要联系方式.
Email: krichev@math.columbia.edu
俄罗斯联邦, Moscow; Moscow; New York

N. Nekrasov

Skolkovo Institute for Science and Technology; Simons Center For Geometry And Physics

编辑信件的主要联系方式.
Email: nikitastring@gmail.com
俄罗斯联邦, Moscow; Stony Brook

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019