Two-Dimensional Periodic Schrödinger Operators Integrable at an Energy Eigenlevel


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The main goal of the first part of the paper is to show that the Fermi curve of a two-dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M-curve. Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an antiholomorphic involution so that each but one oval contains precisely one pole. The topological type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper is devoted to the construction of such operators with the help of a generalization of the Novikov-Veselov construction.

Sobre autores

A. Ilina

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics

Autor responsável pela correspondência
Email: ekrez@yandex.ru
Rússia, Moscow; Moscow

I. Krichever

Skolkovo Institute for Science and Technology; National Research University Higher School of Economics; Columbia University

Autor responsável pela correspondência
Email: krichev@math.columbia.edu
Rússia, Moscow; Moscow; New York

N. Nekrasov

Skolkovo Institute for Science and Technology; Simons Center For Geometry And Physics

Autor responsável pela correspondência
Email: nikitastring@gmail.com
Rússia, Moscow; Stony Brook

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019