On the Hyperbolicity Locus of a Real Curve
- Авторлар: Orevkov S.Y.1
-
Мекемелер:
- Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
- Шығарылым: Том 52, № 2 (2018)
- Беттер: 151-153
- Бөлім: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234474
- DOI: https://doi.org/10.1007/s10688-018-0222-7
- ID: 234474
Дәйексөз келтіру
Аннотация
Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.
Авторлар туралы
S. Orevkov
Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
Хат алмасуға жауапты Автор.
Email: orevkov@math.ups-tlse.fr
Франция, Toulouse
Қосымша файлдар
