On the Hyperbolicity Locus of a Real Curve
- 作者: Orevkov S.Y.1
-
隶属关系:
- Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
- 期: 卷 52, 编号 2 (2018)
- 页面: 151-153
- 栏目: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234474
- DOI: https://doi.org/10.1007/s10688-018-0222-7
- ID: 234474
如何引用文章
详细
Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.
作者简介
S. Orevkov
Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
编辑信件的主要联系方式.
Email: orevkov@math.ups-tlse.fr
法国, Toulouse
补充文件
