On the Hyperbolicity Locus of a Real Curve


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.

作者简介

S. Orevkov

Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier

编辑信件的主要联系方式.
Email: orevkov@math.ups-tlse.fr
法国, Toulouse

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018