On the Hyperbolicity Locus of a Real Curve
- Autores: Orevkov S.Y.1
-
Afiliações:
- Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
- Edição: Volume 52, Nº 2 (2018)
- Páginas: 151-153
- Seção: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234474
- DOI: https://doi.org/10.1007/s10688-018-0222-7
- ID: 234474
Citar
Resumo
Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.
Sobre autores
S. Orevkov
Steklov Mathematical Institute, Moscow, Russia IMT, L’Université Paul Sabatier
Autor responsável pela correspondência
Email: orevkov@math.ups-tlse.fr
França, Toulouse
Arquivos suplementares
