Spectra of 3 × 3 upper triangular operator matrices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let H1, H2, and H3 be complex separable Hilbert spaces. Given AB(H1), BB(H2), and CB(H3), write \({M_{D,E,F}} = \left( {\begin{array}{*{20}{c}}
A&D&E \\
0&B&F \\
0&0&C
\end{array}} \right)\)
, where DB(H2,H1), EB(H3,H1), and FB(H3,H2) are unknown operators. This paper gives a complete description of the intersection ∩D,E,Fσ(MD,E,F), where D, E, and F range over the respective sets of bounded linear operators. Further, we show that σ(A) ∪ σ(B) ∪ σ(C) = σ(MD,E,F) ∪ W, where W is the union of certain gaps in σ(MD,E,F), which are subsets of (σ(A) ∩ σ(B)) ∪ (σ(B) ∩ σ(C)) ∪ (σ(A) ∩ σ(C)). Finally, we obtain a necessary and sufficient condition for the relation σ(MD,E,F) = σ(A)∪σ(B)∪σ(C) to hold for any D, E, and F.

Sobre autores

Xiufeng Wu

School of Mathematical Sciences, Inner Mongolia University

Email: huangjunjie@imu.edu.cn
República Popular da China, Hohhot

Junjie Huang

School of Mathematical Sciences, Inner Mongolia University

Autor responsável pela correspondência
Email: huangjunjie@imu.edu.cn
República Popular da China, Hohhot

Alatancang Chen

School of Mathematical Sciences, Inner Mongolia University; Department of Mathematics, Hohhot University for Nationalities

Email: huangjunjie@imu.edu.cn
República Popular da China, Hohhot; Hohhot

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017