Spectra of 3 × 3 upper triangular operator matrices


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let H1, H2, and H3 be complex separable Hilbert spaces. Given AB(H1), BB(H2), and CB(H3), write \({M_{D,E,F}} = \left( {\begin{array}{*{20}{c}}
A&D&E \\
0&B&F \\
0&0&C
\end{array}} \right)\)
, where DB(H2,H1), EB(H3,H1), and FB(H3,H2) are unknown operators. This paper gives a complete description of the intersection ∩D,E,Fσ(MD,E,F), where D, E, and F range over the respective sets of bounded linear operators. Further, we show that σ(A) ∪ σ(B) ∪ σ(C) = σ(MD,E,F) ∪ W, where W is the union of certain gaps in σ(MD,E,F), which are subsets of (σ(A) ∩ σ(B)) ∪ (σ(B) ∩ σ(C)) ∪ (σ(A) ∩ σ(C)). Finally, we obtain a necessary and sufficient condition for the relation σ(MD,E,F) = σ(A)∪σ(B)∪σ(C) to hold for any D, E, and F.

About the authors

Xiufeng Wu

School of Mathematical Sciences, Inner Mongolia University

Email: huangjunjie@imu.edu.cn
China, Hohhot

Junjie Huang

School of Mathematical Sciences, Inner Mongolia University

Author for correspondence.
Email: huangjunjie@imu.edu.cn
China, Hohhot

Alatancang Chen

School of Mathematical Sciences, Inner Mongolia University; Department of Mathematics, Hohhot University for Nationalities

Email: huangjunjie@imu.edu.cn
China, Hohhot; Hohhot

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC