Spectra of 3 × 3 upper triangular operator matrices
- Authors: Wu X.1, Huang J.1, Chen A.1,2
-
Affiliations:
- School of Mathematical Sciences, Inner Mongolia University
- Department of Mathematics, Hohhot University for Nationalities
- Issue: Vol 51, No 2 (2017)
- Pages: 135-143
- Section: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234303
- DOI: https://doi.org/10.1007/s10688-017-0175-2
- ID: 234303
Cite item
Abstract
Let H1, H2, and H3 be complex separable Hilbert spaces. Given A ∈ B(H1), B ∈ B(H2), and C ∈ B(H3), write \({M_{D,E,F}} = \left( {\begin{array}{*{20}{c}}
A&D&E \\
0&B&F \\
0&0&C
\end{array}} \right)\), where D ∈ B(H2,H1), E ∈ B(H3,H1), and F ∈ B(H3,H2) are unknown operators. This paper gives a complete description of the intersection ∩D,E,Fσ(MD,E,F), where D, E, and F range over the respective sets of bounded linear operators. Further, we show that σ(A) ∪ σ(B) ∪ σ(C) = σ(MD,E,F) ∪ W, where W is the union of certain gaps in σ(MD,E,F), which are subsets of (σ(A) ∩ σ(B)) ∪ (σ(B) ∩ σ(C)) ∪ (σ(A) ∩ σ(C)). Finally, we obtain a necessary and sufficient condition for the relation σ(MD,E,F) = σ(A)∪σ(B)∪σ(C) to hold for any D, E, and F.
About the authors
Xiufeng Wu
School of Mathematical Sciences, Inner Mongolia University
Email: huangjunjie@imu.edu.cn
China, Hohhot
Junjie Huang
School of Mathematical Sciences, Inner Mongolia University
Author for correspondence.
Email: huangjunjie@imu.edu.cn
China, Hohhot
Alatancang Chen
School of Mathematical Sciences, Inner Mongolia University; Department of Mathematics, Hohhot University for Nationalities
Email: huangjunjie@imu.edu.cn
China, Hohhot; Hohhot
Supplementary files
