The Effect of Termomechanical Treatment on the Low-Cyclic Fatigue Behavior in an Al–Cu–Mg–Ag Alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The mechanical behavior under monotonic and cyclic loadings has been studied in an Al–4.5Cu–0.56Mg–0.77Ag–0.42Mn–0.12Ti–0.05V–0.02Fe (wt %) alloy subjected to thermomechanical treatment (TMT), including a solution heat treatment, quenching in water, uniaxial tension with a plastic strain of 3%, and
peak aging at 190°C (state T83 according to the classification of the Aluminum Association). The T83-ed alloy demonstrates the lowest tensile strength properties in comparison with T6 state (traditional aging) and TMT,
including rolling with a 40%-reduction (T840). Compared to T6 and T840 states, the lowest cyclic strength and cyclic strain hardening coefficients in the Ramberg-Osgood relationship was found to be in T83-ed alloy. To achieve long fatigue life, it is advisable to reduce to the minimum values the degree of intermediate plastic deformation required for straightening Al–Cu–Mg–Ag sheets after their buckling during high-temperature heating for quenching.

作者简介

M. Gazizov

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

M. Gazizova

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

I. Zuiko

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

R. Kaibyshev

Belgorod State National Research University (NRU “BelSU”)

编辑信件的主要联系方式.
Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

参考

  1. Polmear I.J., Pons G., Barbaux Y., Octor H., Sanchez C., Morton A.J., Borbidge W.E., Rogers S. After Concorde: Evaluation of creep resistant Al–Cu–Mg–Ag alloys // Mater. Sci. Technol. 1999. V. 15. P. 861–868.
  2. Gazizov M., Kaibyshev R. Low-cyclic fatigue behaviour of an Al–Cu–Mg–Ag alloy under T6 and T840 conditions // Mater. Sci. Technol. 2017. V. 33. P. 688–698.
  3. Газизов М.Р., Кайбышев Р.О. Кинетика и механизм разрушения при циклическом нагружении Al–Cu–Mg–Ag сплава //ФММ. 2016. Т. 117. № 7. С. 748–757.
  4. Gazizov M., Zuiko I., Kaibyshev R. Effect of cold plastic deformation prior to ageing on creep resistance of an Al–Cu–Mg–Ag alloy // Mater. Sci. Forum. 2014. V. 794–796. P. 278–283.
  5. Gazizov M., Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy // Mater. Sci. Eng. A. 2015. V. 625. P. 119–130.
  6. Auld J.H. Structure of metastable precipitate in some Al–Cu–Mg–Ag alloys // Mater. Sci. Technol. 1986. V. 2. P. 784–787.
  7. Kerry S., Scott V.D. Structure and orientation relationship of precipitates formed in Al–Cu–Mg–Ag alloys // Met. Sci. 1984. V. 18. P. 289–294.
  8. Muddle B.C., Polmear I.J. The precipitation Ω phase in Al–Cu–Mg–Ag alloys // Acta Metall. 1989. V. 37. P. 777–789.
  9. Abis S., Mengucci P., Riontino G. A study of the high-temperature ageing of Al–Cu–Mg–Ag alloy 201 // Philos. Mag. 1993. V. B67. № 4. P. 465–484.
  10. Ringer S.P., Yeung W., Muddle B.C., Polmear I.J. Precipitate stability in Al–Cu–Mg–Ag alloys aged at high temperatures // Acta Metall. Mater. 1994. V. 42. P. 1715–1725.
  11. Wang S.C., Starink M.J. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys // Int. Mater. Rev. 2005. V. 50. P. 193–215.
  12. Зуйко И.С., Газизов М.Р., Кайбышев Р.О. Влияние термомеханической обработки на микроструктуру, фазовый состав и механические свойства сплава системы Al–Cu–Mn–Mg–Zr // ФММ. 2016. V. 117. № 9. С. 938–951.
  13. Garg A., Howe J.M. Convergent-beam electron diffraction analysis of the Ω phase in an Al–4.0Cu–0.5Mg–0.5Ag alloy // Acta Metall. Mater. 1999. V. 39. P. 1939–1946.
  14. Hutchinson C.R., Fan X., Pennycook S.J., Shiflet G.J. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys // Acta Mater. 2001. V. 49. P. 2827–2841.
  15. Knowles K.M., Stobbs W.M. The structure of {111} age-hardening precipitates in Al–Cu–Mg–Ag alloys // Acta Crystallogr. 1988. V. 44. P. 207–227.
  16. Kang S.J., Zuo J.-M., Han H.N., Kim M. Ab initio study of growth mechanism of omega precipitates in Al–Cu–Mg–Ag alloy and similar systems // J. Alloys Compd. 2018. V. 737. P. 207–212.
  17. Kang S.J., Kim Y.W., Kim M., Zuo J.M. Determination of interfacial atomic structure, misfits and energetics of Ω phase in Al–Cu–Mg–Ag alloy // Acta Mater. 2014. V. 81. P. 501–511.
  18. Gazizov M.R., Boev A.O., Marioara C.D., Holmestad R., Aksyonov D.A., Gazizova M.Yu., Kaibyshev R.O. Precipitate/matrix incompatibilities related to the {111}Al Ω plates in an Al–Cu–Mg–Ag alloy // Mater. Charact. 2021. V. 182. P. 111586.
  19. Fonda R.W., Cassada W.A., Shiflet G.J.J. Accommodation of the misfit strain surrounding {III} precipitates (Ω) in Al–Cu–Mg–(Ag) // Acta Metall. Mater. 1992. V. 40. P. 2539–2546.
  20. Gazizov M.R., Boev A.O., Marioara C.D., Holmestad R., Gazizova M.Y., Kaibyshev R.O. Edge interfaces of the Ω plates in a peak-aged Al–Cu–Mg–Ag alloy // Mater. Charact. 2022. V. 185. P. 111747.
  21. Gazizov M., Kaibyshev R. High cyclic fatigue performance of Al–Cu–Mg–Ag alloy under T6 and T840 conditions // Trans. Nonferrous Met. Soc. China. 2017. V. 27. P. 1215–1223.
  22. Золоторевский В.С. Механические свойства металлов. М.: МИСИС, 1998. 400 с.
  23. Niesłony A., Dsoki C., Kaufmann H., Krug P. New method for evaluation of the Manson-Coffin-Basquin and Ramberg–Osgood equations with respect to compatibility // Int. J. Fatigue. 2008. V. 30. P. 1967–1977.
  24. Lapovok R., Loader C., Torre F.H.D., Semiatin S.L. Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure // Mater. Sci. Eng. 2006. V. A425. P. 36–46.
  25. Williams D.B., Carter B.C. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York, 2009. 775 p.
  26. Gazizov M.R., Belyakov A.N., Holmestad R., Gazizova M.Yu., Krasnikov V.S., Bezborodova P.A., Kaibyshev R.O. The deformation behavior of the {111}Al plates in an Al–Cu–Mg–Ag alloy // Acta Mater. 2023. V. 243. P. 118534.
  27. Gazizov M., Kaibyshev R., Precipitation structure and strengthening mechanisms in an Al–Cu–Mg–Ag alloy // Mater. Sci. Eng. 2017. V. A702. P. 29–40.
  28. Kamikawa N., Huang X., Tsuji N., Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed // Acta Mater. 2009. V. 57. P. 4198–4208.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (922KB)
3.

下载 (2MB)
4.

下载 (1MB)
5.

下载 (421KB)
6.

下载 (77KB)

版权所有 © М.Р. Газизов, М.Ю. Газизова, И.С. Зуйко, Р.О. Кайбышев, 2023

##common.cookie##