A raman spectroscopic investigation of conformation of flavin adenine dinucleotide, a coenzyme of d-amino acid oxidase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on silver nanoparticles application, surface-enhanced Raman scattering spectra of D-amino acid oxidase from pig kidney were recorded and analyzed. Spectral parameters characteristic of conformational changes in cofactor flavin adenine dinucleotide during activation of the enzyme by D-amino acids were revealed. It was found that enzyme substrate specificity determines the amount of time from the start of of the conformational changes of flavin adenine dinucleotide until they no longer occur: in the presence of D-alanine, registration of the said conformational changes takes up just a few seconds, while it takes 10 min in the presence of D-serine .

About the authors

J. V Bochkova

Lomonosov Moscow State University

Moscow, Russia

W. Liu

MSU-BIT University

Shenzhen, Guangdong Province, China

N. A Brazhe

Lomonosov Moscow State University

Moscow, Russia

A. A Zhgun

Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences

Moscow, Russia

G. V Maksimov

Lomonosov Moscow State University

Email: gmaksimov@mail.ru
Moscow, Russia

References

  1. L. Pollegioni and G. Molla. Cell Press, 29 (6), 276 (2011).
  2. K. Yagi, K. Okamura, et al., Biochim. Biophys. Acta, 146, 77 (1967).
  3. R. Upadhya, H. Nagajyothi, and S. G. Bhat. Process Biochem., 35, 7 (1999).
  4. L. Pollegioni, B. Langkau, and W. Tischer, J. Biol. Chem., 268 (19), 1385 (1993).
  5. L. Pollegioni, S. Sacchi, and G. Murtas, Front. Mol. Biosci., 5, 107 (2018).
  6. R. Konno, et al. Arch. Toxicol., 74, 473 (2000).
  7. H. Wei, N. Gong, et al., Pharmacol. Biochem. Behav., 111, 30 (2013).
  8. J. Sasabe, Y. Miyoshi, et al., Nat. Microbiol., 1 (10), 16125 (2016).
  9. A. L. Kalinichenko, et al., Redox Biol., 60, 2213 (2023).
  10. S. Moussa, G. Murtas, et al., ACS Appl. BioMater., 4, 5598 (2021).
  11. L. Rodriguez-Lorenzo, L. Fabris, and R. A. Alvarez-Puebla. Anal. Chim. Acta, 745, 10 (2012).
  12. A. A. Semenova, E. A. Goodilin, N. A. Brazhe, et al. J. Mater. Chem., 22, 24530 (2012).
  13. Y. Nishina, T. Kitagawa, K. Shiga., J. Biochem., 84, 925 (1978).
  14. T. Kitagawa, Y. Nishina, et al., Biochemistry, 18, 1804 (1979).
  15. Y. Nishina, H. Tojo, and K. Shiga, J. Biochem., 104, 227 (1988).
  16. Y. Nishina, R. Miura, and H. Tojo. J. Biochem., 99, 329 (1986).
  17. Y. Nishina, K. Shiga, et al., J. Biochem., 88, 411 (1980).
  18. Y. Nishina, K. Shiga, and R. Miura, J. Biochem., 94, 1979 (1983).
  19. https://www.uniprot.org/uniprotkb/P14920/entry.
  20. M. Gabler, M. Hensel, and L. Fischer, Enzyme Microb. Technol., 27 (8), 605 (2000).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies