A raman spectroscopic investigation of conformation of flavin adenine dinucleotide, a coenzyme of d-amino acid oxidase

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on silver nanoparticles application, surface-enhanced Raman scattering spectra of D-amino acid oxidase from pig kidney were recorded and analyzed. Spectral parameters characteristic of conformational changes in cofactor flavin adenine dinucleotide during activation of the enzyme by D-amino acids were revealed. It was found that enzyme substrate specificity determines the amount of time from the start of of the conformational changes of flavin adenine dinucleotide until they no longer occur: in the presence of D-alanine, registration of the said conformational changes takes up just a few seconds, while it takes 10 min in the presence of D-serine .

Sobre autores

J. Bochkova

Lomonosov Moscow State University

Moscow, Russia

W. Liu

MSU-BIT University

Shenzhen, Guangdong Province, China

N. Brazhe

Lomonosov Moscow State University

Moscow, Russia

A. Zhgun

Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences

Moscow, Russia

G. Maksimov

Lomonosov Moscow State University

Email: gmaksimov@mail.ru
Moscow, Russia

Bibliografia

  1. L. Pollegioni and G. Molla. Cell Press, 29 (6), 276 (2011).
  2. K. Yagi, K. Okamura, et al., Biochim. Biophys. Acta, 146, 77 (1967).
  3. R. Upadhya, H. Nagajyothi, and S. G. Bhat. Process Biochem., 35, 7 (1999).
  4. L. Pollegioni, B. Langkau, and W. Tischer, J. Biol. Chem., 268 (19), 1385 (1993).
  5. L. Pollegioni, S. Sacchi, and G. Murtas, Front. Mol. Biosci., 5, 107 (2018).
  6. R. Konno, et al. Arch. Toxicol., 74, 473 (2000).
  7. H. Wei, N. Gong, et al., Pharmacol. Biochem. Behav., 111, 30 (2013).
  8. J. Sasabe, Y. Miyoshi, et al., Nat. Microbiol., 1 (10), 16125 (2016).
  9. A. L. Kalinichenko, et al., Redox Biol., 60, 2213 (2023).
  10. S. Moussa, G. Murtas, et al., ACS Appl. BioMater., 4, 5598 (2021).
  11. L. Rodriguez-Lorenzo, L. Fabris, and R. A. Alvarez-Puebla. Anal. Chim. Acta, 745, 10 (2012).
  12. A. A. Semenova, E. A. Goodilin, N. A. Brazhe, et al. J. Mater. Chem., 22, 24530 (2012).
  13. Y. Nishina, T. Kitagawa, K. Shiga., J. Biochem., 84, 925 (1978).
  14. T. Kitagawa, Y. Nishina, et al., Biochemistry, 18, 1804 (1979).
  15. Y. Nishina, H. Tojo, and K. Shiga, J. Biochem., 104, 227 (1988).
  16. Y. Nishina, R. Miura, and H. Tojo. J. Biochem., 99, 329 (1986).
  17. Y. Nishina, K. Shiga, et al., J. Biochem., 88, 411 (1980).
  18. Y. Nishina, K. Shiga, and R. Miura, J. Biochem., 94, 1979 (1983).
  19. https://www.uniprot.org/uniprotkb/P14920/entry.
  20. M. Gabler, M. Hensel, and L. Fischer, Enzyme Microb. Technol., 27 (8), 605 (2000).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies