Kinetics and mechanisms of oxidative hemolysis of erythrocytes in the presence of azoand peroxide initiator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of oxidative hemolysis of a 0.2% suspension of mouse erythrocytes in the presence of radicalforming initiators, 2,2'-azobis(2-amidinopropane) dihydrochloride and tert-butyl hydroperoxide, was studied over a wide range of concentrations. Hemolysis of erythrocytes proceeded with the activation of lipid peroxidation in erythrocyte membranes. In the case of tert-butyl hydroperoxide, oxidative processes also developed in the soluble part of the cell, leading to the formation of insoluble hemoglobin aggregates. An induction period of hemolysis (the time period required to reach 10% hemolysis) in the presence of 2,2'-azobis(2-amid-inopropane) dihydrochloride decreases inversely proportional to the square root of the initiator concentration, that is in accord with the classical theory of radical chain oxidation of hydrocarbons. In the case of tertbutyl hydroperoxide, this association was not found. The use of 2,2'-azobis(2-amidinopropane) dihydrochloride as a lipid peroxidation initiator is preferred in the erythrocyte model for testing natural and synthetic compounds for antioxidant activity.

About the authors

E. M Sokolova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Chernogolovka, Moscow Region, Russia

N. A Dubenskaia

Lomonosov Moscow State University

Moscow, Russia

B. L Psikha

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Chernogolovka, Moscow Region, Russia

N. I Neshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: neshev@icp.ac.ru
Chernogolovka, Moscow Region, Russia

References

  1. Е. Б. Бурлакова, Успехи химии, 44 (10), 1871 (1975).
  2. О. Г. Шевченко и Л. Н. Шишкина, Успехи соврем. биологии, 134 (2), 133 (2014).
  3. Ю. Д. Семчиков, Высокомолекулярные соединения (Издательский центр "Академия", М., 2010).
  4. J. D. Young, L. G. Leong, M. A. DiNome, and Z. A. Cohn, Anal. Biochem., 154 (2), 649 (1986).
  5. J. Stocks and T. L. Dormandy. Br. J. Haematol., 20, 95 (1971).
  6. R. U. R. Wahl, L. Zeng, S. A. Madison, et al., J. Chem. Soc., Perkin Trans. 2, 2009 (1998).
  7. C. L6pez-Alarc6n, E. Fuentes-Lemus, J. D. Figueroa, et al., Free Rad. Biol. Med., 160, 78 (2020).
  8. B. Deuticke, K. B. Heller, and C. W. Haest, Biochim. Biophys Acta, 854, 169 (1986).
  9. R. J. Trotta, S. G. Sullivan, and A. Stern, Biochem. J., 204, 405 (1982).
  10. А. В. Доманский, Е. А. Лапшина, И. Б. Заводник, Биохимия, 70 (7), 922 (2005).
  11. J. Van der Zee, D. P. Barr, and R. P. Mason, Free Radic. Biol. Med., 20 (2), 199 (1996).
  12. A. I. Alayash and M. T. Wilson, Front. Mol. Biosci., 9, 910795 (2022).
  13. О. В. Космачевская и А. Ф. Топунов. Прикл. биох. микробиол., 45 (6), 627 (2009).
  14. D. A. Svistunenko, R. P. Patel, S. V. Voloshchenko, and M. T. Wilson, J. Biol. Chem., 272 (11), 7114 (1997).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies