On the Determination of the Region Border Prior to the Limit Steady Modes of Electric Power Systems by the Analysis Method of the Tropical Geometry of the Power Balance Equations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Проведен анализ известного [8] подхода, в котором для оценки области существования режима электроэнергетической системы применяется тропическая геометрия над комплексными мультиполями балансов активной мощности. Показаны его ограничения и предложен новый подход, а также представлен критерий для определения границы, предшествующей нарушению устойчивости энергосистемы, обусловленной перестройкой тропического множества решений. Разработанный подход позволяет по известным параметрам линий и динамике изменения модулей напряжений узлов и их нагрузки определять приближение режима энергосистемы к предельному.

Bibliografia

  1. Venikov V.A., Stroev V.A., Idelchik V.I., Tarasov V.I. Estimation of Electrical Power System Steady State Stability in Load Flow Calculations // IEEE Trans. Power App. Syst. 1975. V. 94. No. 3. P. 1034–1041.
  2. Dobson A., Lu L. New Methods for Computing a Closest Saddle Node Bifurcation and Worst Case Load Power Margin for Voltage Collapse // IEEE Trans. Power Syst. 1993. V. 8. No. 3. P. 905–911.
  3. Аюев Б.И., Давыдов В.В., Ерохин П.М. Оптимизационная модель предельных режимов электрических систем // Электричество. 2010. № 11. С. 2–12.
  4. Voropai N.I., Golub I.I., Efimov D.N., et al. Spectral and Modal Methods for Studying Stability and Control of Electric Power Systems // Autom. Remote Control. 2020. V. 81. No. 10. P. 1751–1774.
  5. Wang Y., Lopez J.A., Sznaier M. Convex Optimization Approaches to Information Structured Decentralized Control // IEEE Trans. Autom. Control. 2018. V. 63. No. 10. P. 3393–3403.
  6. Matveev A.S., MacHado J.E., Ortega R., et al. Tool for Analysis of Existence of Equilibria and Voltage Stability in Power Systems with Constant Power Loads // IEEE Trans. Autom. Control. 2020. V. 65. No. 11. P. 4726–4740.
  7. Ghiocel S.G., Chow J.H. A Power Flow Method Using a New Bus Type for Computing Steady-State Voltage Stability Margins // IEEE Trans. Power Syst. 2014. V. 29. No. 2. P. 958–965.
  8. Kirshtein B.K., Litvinov G.L. Analyzing Stable Regimes of Electrical Power Systems and Tropical Geometry of Power Balance Equations Over Complex Multifields // Autom. Remote Control. 2014. V. 75. No. 10. P. 1802–1813.
  9. Su H.Y., Liu C.W. Estimating the Voltage Stability Margin Using PMU Measurements // IEEE Trans. Power Syst. 2016. V. 31. No. 4. P. 3221–3229.
  10. Ayuev B.I., Davydov V.V., Erokhin P.M. Fast and Reliable Method of Searching Power System Marginal States // IEEE Trans. Power Syst. 2016. V. 31. No. 6. P. 4525–4533. https://doi.org/10.1109/TPWRS.2016.2538299
  11. Шаров Ю.В. О развитии методов анализа статической устойчивости электроэнергетических систем // Электричество. 2017. № 1. С. 12–18.
  12. Шаров Ю.В. Применение модального подхода для решения проблемы обеспечения статической устойчивости электроэнергетических систем // Известия РАН. Энергетика. 2017. № 2. С. 13–29.
  13. Rao S., Tylavsky D., Feng Y. Estimating the Saddle-Node Bifurcation Point of Static Power Systems Using the Holomorphic Embedding Method // Int. J. Electr. Power Energ. Syst. 2017. V. 84. P. 1–12.
  14. Liu C., Wang B., Hu F., Sun K., Bak C.L. Online Voltage Stability Assessment for Load Areas Based On the Holomorphic Embedding Method // IEEE Trans. Power Syst. 2018. V. 33. No. 4. P. 3720–3734.
  15. Qiu Y., Wu H., Song Y., Wang J. Global Approximation of Static Voltage Stability Region Boundaries Considering Generator Reactive Power Limits // IEEE Trans. Power Syst. 2018. V. 33. No. 5. P. 5682–5691.
  16. Wang L., Chiang H.D. Group-Based Line Switching for Enhancing ContingencyConstrained Static Voltage Stability // IEEE Trans. Power Syst. 2020. V. 35. No. 2. P. 1489–1498.
  17. Ali M., Gryazina E., Khamisov O., Sayfutdinov T. Online assessment of voltage stability using Newton-Corrector algorithm // IET Generat., Transmiss. Distribut. 2020. V. 14. No. 19. P. 4207–4216.
  18. Булатов Ю.Н., Крюков А.В, Суслов К.В., Черепанов А.В. Оперативное определение запасов статической устойчивости в системах электроснабжения с установками распределенной генерации // Вестник Иркут. гос. техн. ун-та. 2021. Т. 25. № 1(156). С. 31–43. https://doi.org/10.21285/1814-3520-2021-1-31-43
  19. Bulatov Y., Kryukov A., Suslov K., et al. A Stochastic Model for Determining Static Stability Margins in Electric Power Systems // Computation. 2022. V. 10. No. 5. https://doi.org/10.3390/computation10050067
  20. Weng Y., Yu S., Dvijotham K., Nguyen H.D. Fixed-Point Theorem-Based Voltage Stability Margin Estimation Techniques for Distribution Systems with Renewables // IEEE Transact. Industr. Inform. 2022. V. 18. No. 6. P. 3766–3776. https://doi.org/10.1109/TII.2021.3112097
  21. Zhang W., Wang T., Chiang H.D. A Novel FFHE-Inspired Method for Large Power System Static Stability Computation // IEEE Trans. Power Syst. 2022. V. 37. No. 1. P. 726–737. https://doi.org/10.1109/TPWRS.2021.3093236
  22. Ali M., Gryazina E., Dymarsky A., Vorobev P. Calculating voltage feasibility boundaries for power system security assessment // Int. J. Electr. Power Energ. Syst. 2023. V. 146. 108739. https://doi.org/10.1016/j.ijepes.2022.108915
  23. Ali M., Ali M.H., Gryazina E., Terzija V. Calculating multiple loadability points in the power flow solution space // Int. J. Electr. Power Energ. Syst. 2023. V. 148. 108915. https://doi.org/10.1016/j.ijepes.2022.108739
  24. Machado J.E., Grino R., Barabanov N., et al. On Existence of Equilibria of MultiPort Linear AC Networks with Constant-Power Loads // IEEE Transact. Circuits and Systems. Part 1: Regular Papers. 2017. V. 64. No. 10. P. 2772–2782. https://doi.org/10.1109/TCSI.2017.2697906
  25. Danilov M.I., Romanenko I.G. Determination of Power Flows and Temperature of Electrical Network Wires of a Power System Steady State // Power Technol. Engineer. 2023. V. 56. No. 5. P. 739–750. https://doi.org/10.1007/s10749-023-01583-z
  26. Karimi M., Shahriari A., Aghamohammadi M.R., et al. Application of NewtonBased Load Flow Methods for Determining Steady-State Condition of Well and Ill-Conditioned Power Systems: A Review // Int. J. Electr. Power Energ. Syst. 2019. V. 113. P. 298–309.
  27. Zorin I.A., Gryazina E.N. An Overview of Semidefinite Relaxations for Optimal Power Flow Problem // Autom. Remote Control. 2019. V. 80. No. 5. P. 813–833. https://doi.org/10.1134/S0005231019050027
  28. Danilov M.I., Romanenko I.G. Identification of Unauthorized Electric-Power Consumption in the Phases of Distribution Networks with Automated Metering Systems // Power Technol. Engineer. 2022. V. 56. No. 3. P. 414–422. https://doi.org/10.1007/s10749-023-01530-y
  29. Данилов М.И., Романенко И.Г. Оперативная идентификация сопротивлений проводов распределительных сетей 380 В автоматизированными системами учета // Энергетика. Изв. вузов и энерг. объединений СНГ. 2023. Т. 66. № 2. P. 124–140. https://doi.org/10.21122/1029-7448-2023-66-2-124-140
  30. Bonchuk I.A., Shaposhnikov A.P., Sozinov M.A., Erokhin P.M. Optimization of the Operating Modes of Power Plants in Isolated Electrical Power Systems // Power Technol. Engineer. 2021. V. 55. No. 3. P. 445–453. https://doi.org/10.1007/s10749-021-01380-6

Declaração de direitos autorais © The Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies