Spectral Decompositions of Gramians and Energy Metrics of Continuous Unstable Control Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Deterministic continuous finite-dimensional stationary linear dynamic control systems with many inputs and many outputs are considered. Authors assume that the dynamics matrix can be both stable and unstable, but its eigenvalues are different, do not belong to the imaginary axis, and their pairwise sum is not equal to 0. The problems of constructing spectral solutions of the equations of state and matrices of gramian controllability of these systems, as well as the associated energy functionals of the degree of stability and reachability with the aim of optimal placement of sensors and
actuators of multi-connected control systems and complex networks are considered. To solve the listed problems, the article uses various models of the system in state space: a general representation, as well
as a representation in various canonical forms. To calculate the spectral decompositions of controllability gramians, pseudo-Hankel matrices (Xiao matrices) are used. New methods have been proposed
and algorithms have been developed for calculating controllability gramians and energy metrics of linear systems. The research results can be used for the optimal placement of sensors and actuators of
multi-connected control systems or for control with minimal energy in complex networks of various natures

About the authors

I. B. Yadykin

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: jad@ipu.ru
Moscow, Russia

I. A. Galyaev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: ivan.galyaev@yandex.ru
Moscow, Russia

References

  1. Antoulas A.C. Approximation of Large-Scale Dynamical Systems. SIAM. Philadephia, 2005.
  2. Benner P., Damm T. Lyapunov equations, Energy Functionals and Model Order Reduction of Bilinear and Stochastic Systems // SIAM J. Control Optim. 2011. V. 49. P. 686-711.
  3. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Теория автоматического управления. Учеб. Пособие. М.: ЛЕНАНД, 2019. 504 с.
  4. Kailath T. Linear Systems Englewood Cliffs, N.J.: Prentice-Hall, 1980. 672 pp.
  5. Зубов Н.Е., Зыбин Е.Ю., Микрин Е.А., Мисриханов М.Ш., Рябченко В.Н. Общие аналитические формы решения уравнений Сильвестра и Ляпунова для непрерывных и дискретных динамических систем // Известия РАН. Теория и системы управления. 2017. № 1. С. 3-20.
  6. Параев Ю.И., Перепелкин Е.А. Линейные матричные уравнения в задачах анализа многосвязных динамических систем. Барнаул: Изд-во Алтайского ГТУ, 2000.
  7. Буков В.Н. Вложение систем. Аналитический подход к анализу и синтезу матричных систем. Калуга: Изд-во Н.Ф. Бочкаревой, 2006.
  8. Godunov S.K. Modern Aspects of Linear Algebra / Trans. of Math. Monografs. V. 175. Providence RI: Amer. Math. Soc., 1998.
  9. Yadykin I.B., Galyaev A.A. On the methods for calculation of grammians and their use in analysis of linear dynamic systems Automation and Remote Control // Pleiades Publishing Ltd. V. 74. No. 2. P. 207-224.
  10. Ядыкин И.Б., Искаков А.Б. Энергетический подход к анализу устойчивости линейных стационарных динамических систем // А и Т. 2016. № 12. С. 37-58.
  11. Yadykin I.B. Spectral Decompositions of Gramians of Continuous Stationary Systems Given by Equations of State in Canonical Forms // Mathematics. 2022. V. 10. No. 13. 2339.
  12. Сasadei G., Wit C., Zampieri S. Model Reduction Based Approximation of the Output Controllability Gramian in Large-Scale Networks // IEEE Transactions on Control of Network Systems. 2020 V. 7. No. 4. P. 1778-1788. https://doi.org/10.1109/TCNS.2020.3000694
  13. Zhou K., Salomon G., Wu E. Balanced realization and model reduction for unstable systems // International Journal of Robust and Nonlinear Control. 1999. Vol. 9. No. 3. P. 183-198.
  14. Lee H., Park Y. Degree of controllability for linear unstable systems // Journal of Vibration and Control. 2016. V. 22. No. 7. P. 1928-1934. https://doi.org/10.1177/1077546314545101
  15. Shaker H., Tahavori M. Optimal sensor and actuator location for unstable systems // Journal of Vibration and Control. 2013. V. 19. No. 12. P. 1915-1920. https://doi.org/10.1177/1077546312451302
  16. Wal M., Jager B. A review of methods for input/output selection // Automatica. 2001. V. 37. No. 4. P. 487-510. https://doi.org/10.1016/S0005-1098(00)00181-3
  17. Birk W., Medvedev A. A note on gramian-based interaction measures // 2003 European Control Conference (ECC). Cambridge, UK, 2003. P. 2625-2630. https://doi.org/10.23919/ECC.2003.7086437.
  18. Mehr F. A Determination of Design of Optimal Actuator Location Based on Control Energy. London/Publisher: City, University of London, 2018.
  19. Петров Б.Н. Избранные труды Т. 1. Теория автоматического управления. М: Наука, 1983. С. 432 (163-178, 223-227 (двукратная), 294-323).
  20. Петров Б.Н., Рутковский В.Ю., Земляков С.Д. Адаптивное координатно-параметрическое управление нестационарными объектами. М: Наука, 1980. 243 с.
  21. Xiao C.S., Feng Z.M., Shan X.M. On the Solution of the Continuous-Time Lyapunov Matrix Equation in Two Canonical Forms // IEE Proc. 1992. V. 139. No. 3. P. 286-290. https://doi.org/10.1049/ip-d.1992.0038
  22. Hauksdottir A., Sigurdsson S. The continuous closed form controllability Gramian and its inverse // 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009. P. 5345-5351. https://doi.org/978-1-4244-4524-0/09
  23. Hsu C., Hou D. Reducing Unstable Linear Control Systems via Real Schur Transformation // Electronics Letters. 1991. V. 27. No. 11. https://doi.org/10.1049/el:19910614
  24. Safonov M., Chiang G. A schur method for balanced-truncation model reduction // IEEE Trans. Autom. Control. 1989. V. 34. No. 7. P. 729-733. https://doi.org/10.1109/9.29399
  25. Lindmark G., Altafini C. Minimum energy control for complex networks // Scientific Reports. 2018. V. 8. No. 3188. P. 1-14. https://doi.org/10.1038/s41598-018-21398-7
  26. Dilip A. The Controllability Gramian, the Hadamard Product, and the Optimal Actuator/Leader and Sensor Selection Problem // Nature Physics. 2019. V. 3. No. 4. P. 883-888. https://doi.org/10.1109/LCSYS.2019.2919278
  27. Pasqualetti F., Zampieri S., Bullo F. Controllability metrics, limitations and algorithms for complex networks // IEEE Transactions on Control of Network Systems. 2014. V. 1. No. 1. P. 40-52. https://doi.org/10.1109/ACC.2014.6858621
  28. Hac A., Liu L. Sensor and actuator location in motion control of flexible structures // Journal of Sound and Vibration. 1993. V. 167. No. 2. P. 239-261.
  29. Faddeev D.K., Faddeeva V.N. Computational Methods of Linear Algebra. Freeman: San-Francisco, CA, USA, 2016.
  30. Hanson B., Peeters R. A Faddeev Sequence Method for solving Lyapunov and Sylvester Equations // Linear Algebra and its Applications. 1996. V. 241-243. P. 401-430.
  31. Nagar S., Singh S. An algorithmic approach for system decomposition and balanced realized model reduction // Journal of the Franklin Institute. 2004. V. 341. No. 7. P. 615-630. https://doi.org/10.1016/j.jfranklin.2004.07.005
  32. Robust Control Tool Box, Mathworks, Version 2. 1997.

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies