Static Feedback Design in Linear Discrete-Time Control Systems Based on Training Examples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of static feedback design in linear discrete time-invariant control systems is considered. The desired behavior of the system is defined by a set of its output variation laws (training examples) and by a requirement to the degree of its stability. Controller’s structural constraints are taken into account. Explicit relations are obtained and an iterative method based on these relations is proposed to find a good initial approximation of the desired gain matrix and to refine it sequentially. In the general case, simple-structure gain matrices are found: in such matrices, only those components are nonzero that are necessary and sufficient to give the system the desired properties. Some examples are provided to illustrate the method.

About the authors

V. A. Mozzhechkov

Tula State University

Author for correspondence.
Email: v.a.moz@yandex.ru
Tula, Russia

References

  1. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Математическая теория автоматического управления. М.: Ленанд, 2019.
  2. Sadabadi M.S., Peaucelle D. From static output feedback to structured robust static output feedback: A survey // Ann. Rev. Control. 2016. V. 42. P. 11-26.
  3. Syrmos V.L., Abdallah C.T., Dorato P., Grigoriadis K. Static output feedback - a survey // Automatica. 1997. V. 33. No. 2. P. 125-137.
  4. Toker O., Ozbay H. On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback // IEEE American Control Conference. Seattle, Washington, USA. 1995. P. 2525-2526.
  5. Toscano R. Structured controllers for uncertain systems: A stochastic optimization approach. N.Y.: Springer-Verlag, 2013.
  6. Rosinova D., Vesely V., Kucera V. A necessary and su cient condition for static output feedback stabilizability of linear discrete-time systems // Kybernetika. 2003. V. 39. P. 447-459.
  7. Cao Y.Y., Lam J., Sun Y.X. Static output stabilization: an ILMI approach // Automatica. 1998. V. 34. No. 12. P. 1641-1645.
  8. Wang X. Pole placement by static output feedback // J. Math. Syst. Estim. Control. 1992. V. 2. No. 2. P. 205-218.
  9. Пакшин П.В., Рябов А.В. Синтез управления со статической обратной связью по выходу для линейных систем // АиТ. 2004. № 4. С. 61-69.
  10. Agulhari C.M., Oliveira R.C., Peres P.L. LMI relaxations for reduced-order robust H∞-control of continuous-time uncertain linear systems // IEEE Trans. Autom. Control. 2012. V. 57. No. 6. P. 1532-1537.
  11. Ebihara Y., Tokuyama K., Hagiwara T. Structured controller synthesis using LMI and alternating projection method // Int. J. Control. 2004. V. 77. No. 12. P. 1137-1147.
  12. Grigoriadis K.M., Beran E.B. Alternating projection algorithms for linear matrix inequalities problems with rank constraints // Advances in Linear Matrix Inequality Methods in Control. SIAM. Philadelphia, USA. 2000. P. 251-267.
  13. Leibfritz F. An LMI-based algorithm for designing suboptimal static H2/H∞ output feedback controllers // SIAM J. Control Optim. 2001. V. 39. No. 6. P. 1711-1735.
  14. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Разреженная обратная связь в линейных системах управления // АиТ. 2014. № 12. С. 13-27.
  15. Быков А.В., Щербаков П.С. Синтез разреженной обратной связи в линейных дискретных системах // АиТ. 2018. № 7. С. 3-21.
  16. Lin F., Fardad M., Jovanovi'c M.R. Design of Optimal Sparse Feedback Gains via the Alternating Direction Method // IEEE Trans. Autom. Control. 2013. V. 58. No. 9. P. 2426-2431.
  17. Belozyorov V.Y. New solution method of linear static output feedback design problem for linear control systems // Linear Algebra Appl. 2016. V. 504. P. 204-227.
  18. Blumthaler I., Oberst U. Design, parametrization, and pole placement of stabilizing output feedback compensators via injective cogenerator quotient signal modules // Linear Algebra Appl. 2012. V. 436. P. 963-1000.
  19. Johnson T., Athans M. On the design of optimal constrained dynamic compensators for linear constant systems // IEEE Trans. Autom. Control. 1970. V. 15 P. 658-660.
  20. Moerder D., Calise A. Convergence of a numerical algorithm for calculating optimal output feedback gains // IEEE Trans. Autom. Control. 1985. V. 30 P. 900-903.
  21. Choi S., Sirisena H.Computation of optimal output feedback gains for linear multivariable systems // IEEE Trans. Autom. Control. 1974. V. 19. P. 254-258.
  22. Kreisselmeier G. Stabilization of linear systems by constant output feedback using the riccati equation // IEEE Trans. Autom. Control. 1975. V. 20. P. 556-557.
  23. Toivonen H.T. A globally convergent algorithm for the optimal constant output feedback problem // Int. J. Control. 1985. V. 41. No. 6. P. 1589-1599.
  24. Geromel J., Peres P., Souza S. Convex analysis of output feedback structural constraints // Proc. IEEE Conf. on Decision and Control. San Antonio, TX, USA. 1993. P. 1363-1364.
  25. Iwasaki T., Skelton R. All controllers for the general H∞ control problem: LMI existence conditions and state space formulas // Automatica. 1994. V. 30. P. 1307-1317.
  26. Параев Ю.И., Смагина В.И. Задачи упрощения структуры оптимальных регуляторов // АиТ. 1975. № 6. С. 180-183.
  27. Мозжечков В.А. Простые структуры в теории управления. Тула: ТулГУ, 2000.
  28. Мозжечков В.А. Синтез линейных регуляторов с простой структурой // АиТ. 2003. № 1. С. 27-41.
  29. Мозжечков В.А. Синтез простых робастных регуляторов линейных стационарных динамических систем // Известия РАН. Теория и системы управления. 2021. № 3. С. 11-22.
  30. Мозжечков В.А. Синтез простых релейных регуляторов автоколебательных систем управления // АиТ. 2022. № 9. С. 81-93.
  31. Мозжечков В.А. Простые структуры в задачах теории управления: формализация и синтез // Известия РАН. Теория и системы управления. 2022. № 3. С. 3-20.
  32. Vapnik V.N. An overview of statistical learning theory // Transactions on Neural Networks. 1999. V. 10. № 5. P. 988-999.
  33. Воронцов К.В. Комбинаторные оценки качества обучения по прецендентам // Доклады Академии наук. 2004. Т. 394. № 2. С. 175-178.
  34. Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. Massachusetts: MIT Press, 2012.
  35. Schmidhuber J. Deep learning in neural networks // Neural Networks. 2015. V. 61. P. 85-117.
  36. Икрамов Х.Д. Численное решение матричных уравнений. М.: Наука, 1984.
  37. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М.: Мир, 1977.
  38. Bertsekas D.P. Convex Optimization Algorithms. Belmont, MA.: Athena Scienti c, 2015.
  39. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies