Time-Optimal Boundary Control for Systems Defined by a Fractional Order Diffusion Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the optimal control problem for a system defined by a one-dimensional diffusion equation with a fractional time derivative. We consider the case when the controls occur only in the boundary conditions. The optimal control problem is posed as the problem of transferring an object from the initial state to a given final state in minimal possible time with a restriction on the norm of the controls. We assume that admissible controls belong to the class of functions L[0, T ]. The optimal control problem is reduced to an infinite-dimensional problem of moments. We also consider the approximation of the problem constructed on the basis of approximating the exact solution of the diffusion equation and leading to a finitedimensional problem of moments. We study an example of boundary control computation and dependencies of the control time and the form of how temporal dependencies in the control dependent on the fractional derivative index.

作者简介

V. Kubyshkin

Trapeznikov Institute of Control Sciences

Email: postnov.sergey@inbox.ru
俄罗斯联邦, Moscow

S. Postnov

Trapeznikov Institute of Control Sciences

编辑信件的主要联系方式.
Email: postnov.sergey@inbox.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018