Numerical Construction of Stackelberg Solutions in a Linear Positional Differential Game Based on the Method of Polyhedra
- Авторы: Kuvshinov D.R.1,2, Osipov S.I.2
- 
							Учреждения: 
							- Krasovsky Institute of Mathematics and Mechanics
- Yeltsin Ural Federal University
 
- Выпуск: Том 79, № 3 (2018)
- Страницы: 479-491
- Раздел: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/150827
- DOI: https://doi.org/10.1134/S0005117918030074
- ID: 150827
Цитировать
Аннотация
We consider the problem of constructing approximate Stackelberg solutions in a linear non-zero-sum positional differential game of two players with terminal payoffs and player controls chosen on convex polyhedra. A formalization of player strategies and motions generated by them is based on the formalization and results of the theory of zero-sum positional differential games developed by N.N. Krasovskii and his scientific school. The problem of finding a Stackelberg solution reduces to solving nonstandard optimal control problems. We propose an approach based on operations with convex polyhedra.
Об авторах
D. Kuvshinov
Krasovsky Institute of Mathematics and Mechanics; Yeltsin Ural Federal University
							Автор, ответственный за переписку.
							Email: kuvshinovdr@yandex.ru
				                					                																			                												                	Россия, 							Yekaterinburg; Yekaterinburg						
S. Osipov
Yeltsin Ural Federal University
														Email: kuvshinovdr@yandex.ru
				                					                																			                												                	Россия, 							Yekaterinburg						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					