Learning Radial Basis Function Networks with the Trust Region Method for Boundary Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the solution of boundary value problems of mathematical physics with neural networks of a special form, namely radial basis function networks. This approach does not require one to construct a difference grid and allows to obtain an approximate analytic solution at an arbitrary point of the solution domain. We analyze learning algorithms for such networks. We propose an algorithm for learning neural networks based on the method of trust region. The algorithm allows to significantly reduce the learning time of the network.

作者简介

L. Elisov

Moscow State Technical University of Civil Aviation

编辑信件的主要联系方式.
Email: lev.el@list.ru
俄罗斯联邦, Moscow

V. Gorbachenko

Penza State University

Email: lev.el@list.ru
俄罗斯联邦, Penza

M. Zhukov

Penza State University

Email: lev.el@list.ru
俄罗斯联邦, Penza

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018