Learning Radial Basis Function Networks with the Trust Region Method for Boundary Problems
- Autores: Elisov L.N.1, Gorbachenko V.I.2, Zhukov M.V.2
- 
							Afiliações: 
							- Moscow State Technical University of Civil Aviation
- Penza State University
 
- Edição: Volume 79, Nº 9 (2018)
- Páginas: 1621-1629
- Seção: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/151013
- DOI: https://doi.org/10.1134/S0005117918090072
- ID: 151013
Citar
Resumo
We consider the solution of boundary value problems of mathematical physics with neural networks of a special form, namely radial basis function networks. This approach does not require one to construct a difference grid and allows to obtain an approximate analytic solution at an arbitrary point of the solution domain. We analyze learning algorithms for such networks. We propose an algorithm for learning neural networks based on the method of trust region. The algorithm allows to significantly reduce the learning time of the network.
Sobre autores
L. Elisov
Moscow State Technical University of Civil Aviation
							Autor responsável pela correspondência
							Email: lev.el@list.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Gorbachenko
Penza State University
														Email: lev.el@list.ru
				                					                																			                												                	Rússia, 							Penza						
M. Zhukov
Penza State University
														Email: lev.el@list.ru
				                					                																			                												                	Rússia, 							Penza						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					