Learning Radial Basis Function Networks with the Trust Region Method for Boundary Problems
- Авторлар: Elisov L.N.1, Gorbachenko V.I.2, Zhukov M.V.2
-
Мекемелер:
- Moscow State Technical University of Civil Aviation
- Penza State University
- Шығарылым: Том 79, № 9 (2018)
- Беттер: 1621-1629
- Бөлім: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/151013
- DOI: https://doi.org/10.1134/S0005117918090072
- ID: 151013
Дәйексөз келтіру
Аннотация
We consider the solution of boundary value problems of mathematical physics with neural networks of a special form, namely radial basis function networks. This approach does not require one to construct a difference grid and allows to obtain an approximate analytic solution at an arbitrary point of the solution domain. We analyze learning algorithms for such networks. We propose an algorithm for learning neural networks based on the method of trust region. The algorithm allows to significantly reduce the learning time of the network.
Авторлар туралы
L. Elisov
Moscow State Technical University of Civil Aviation
Хат алмасуға жауапты Автор.
Email: lev.el@list.ru
Ресей, Moscow
V. Gorbachenko
Penza State University
Email: lev.el@list.ru
Ресей, Penza
M. Zhukov
Penza State University
Email: lev.el@list.ru
Ресей, Penza
Қосымша файлдар
