Learning Radial Basis Function Networks with the Trust Region Method for Boundary Problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the solution of boundary value problems of mathematical physics with neural networks of a special form, namely radial basis function networks. This approach does not require one to construct a difference grid and allows to obtain an approximate analytic solution at an arbitrary point of the solution domain. We analyze learning algorithms for such networks. We propose an algorithm for learning neural networks based on the method of trust region. The algorithm allows to significantly reduce the learning time of the network.

Sobre autores

L. Elisov

Moscow State Technical University of Civil Aviation

Autor responsável pela correspondência
Email: lev.el@list.ru
Rússia, Moscow

V. Gorbachenko

Penza State University

Email: lev.el@list.ru
Rússia, Penza

M. Zhukov

Penza State University

Email: lev.el@list.ru
Rússia, Penza

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018