Multiple Solutions in Euler’s Elastic Problem
- Авторы: Ardentov A.A.1
- 
							Учреждения: 
							- Ailamazyan Program Systems Institute
 
- Выпуск: Том 79, № 7 (2018)
- Страницы: 1191-1206
- Раздел: Nonlinear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/150952
- DOI: https://doi.org/10.1134/S0005117918070020
- ID: 150952
Цитировать
Аннотация
The paper is devoted to multiple solutions of the classical problem on stationary configurations of an elastic rod on a plane; we describe boundary values for which there are more than two optimal configurations of a rod (optimal elasticae). We define sets of points where three or four optimal elasticae come together with the same value of elastic energy. We study all configurations that can be translated into each other by symmetries, i.e., reflections at the center of the elastica chord and reflections at the middle perpendicular to the elastica chord. For the first symmetry, the ends of the rod are directed in opposite directions, and the corresponding boundary values lie on a disk. For the second symmetry, the boundary values lie on a Möbius strip. As a result, we study both sets numerically and in some cases analytically; in each case, we find sets of points with several optimal configurations of the rod. These points form the currently known part of the reachability set where elasticae lose global optimality.
Ключевые слова
Об авторах
A. Ardentov
Ailamazyan Program Systems Institute
							Автор, ответственный за переписку.
							Email: aaa@pereslavl.ru
				                					                																			                												                	Россия, 							Pereslavl-Zalessky						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					